Secondhand Smoke Exposure and Mental Health Among Children and Adolescents

Frank C. Bandiera, MPH; Amanda Kalaydjian Richardson, PhD; David J. Lee, PhD; Jian-Ping He, MD, MSc; Kathleen R. Merikangas, PhD

Objective: To examine a potential association between biologically confirmed secondhand smoke exposure and symptoms of Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition) (DSM-IV) major depressive disorder, generalized anxiety disorder, panic disorder, attention-deficit/hyperactivity disorder, and conduct disorder using a nationally representative sample of US children and adolescents.

Design: Nationally representative cross-sectional survey of the United States.

Setting: Continental United States.

Participants: Children and adolescents aged 8 to 15 years who participated in the National Health and Nutrition Examination Survey from 2001 to 2004.

Intervention: Measurement of serum cotinine level to assess secondhand smoke exposure among nonsmokers.

Main Outcome Measures: The DSM-IV symptoms were derived from selected modules of the National Institute of Mental Health's Diagnostic Interview Schedule for Children Version IV, a structured diagnostic interview administered by trained lay interviewers.

Results: Among nonsmokers, serum cotinine level was positively associated with symptoms of DSM-IV major depressive disorder, generalized anxiety disorder, attention-deficit/hyperactivity disorder, and conduct disorder after adjusting for survey design, age, sex, race/ethnicity, poverty, migraine, asthma, hay fever, maternal smoking during pregnancy, and allostatic load. Associations with serum cotinine level were more apparent for boys and for participants of non-Hispanic white race/ethnicity.

Conclusions: Our results are consistent with a growing body of research documenting an association between secondhand smoke exposure and mental health outcomes. Future research is warranted to establish the biological or psychological mechanisms of association.

The Surgeon General has concluded that there is no risk-free level of secondhand smoke (SHS) exposure and estimated that approximately 66% of children aged 3 to 11 years are exposed to SHS.1 It is well established that SHS exposure causes adverse physical health conditions (eg, respiratory and cardiovascular),2-4 and there is increasing evidence suggesting that it may also adversely affect mental health. Cross-sectional studies5-8 show a positive association between SHS exposure and anxiety or depression among adults, and results of a 2010 prospective analysis of a large cohort of adults conducted over more than 6 years suggest that SHS exposure may predict the onset of poor mental health.9 The effects of SHS exposure on the mental health of children and adolescents are still unclear. Because many mental disorders have an onset in youth at a time when SHS exposure is high, it is critical to consider how SHS may be affecting the mental health of children and adolescents so that appropriate preventive measures can be implemented. Despite evidence of an association, the mechanism by which SHS exposure may promote or exacerbate poor mental health is unclear. Secondhand smoke may be a proxy for stressful living conditions, and stress has been associated with poor mental health.7,8 In response to stress, the hypothalamic-pituitary-adrenal axis and immune, metabolic, autonomic, and cardiovascular systems respond to keep the environment of the body in homeostasis.9 This balance can be measured by examining allostatic load, which represents the wear and tear of the body's response to prolonged psychological stress9 and is associated with the onset of physical and mental conditions.9 Although chronic physical conditions usually manifest in adult-
hypothesis, there is evidence that prolonged exposure to stress may have an effect on the response of the body to stress and result in poor health even among children.10-12 Other hypotheses suggest a link between smoking and poor mental health through nicotine and dopamine pathways.13-15 Smokers who have susceptibility genes to low intrasynaptic dopamine levels have greater smoking-induced dopamine release,15 which has been associated with higher risk for mental disorders.16 Secondhand smoke may also affect respiratory conditions, such as asthma,17 which has been positively associated with mental disorders.18 Because youth exposure to SHS may come from the mother, another important confounder to consider is maternal smoking during pregnancy, which has been associated with greater risk for mental disorders.19

Given the potential mechanisms by which SHS exposure could promote or exacerbate mental health in children and adolescents, it is imperative to conduct further research investigating this association. To date, no studies have examined the effects of SHS exposure on mental health among children and adolescents. Furthermore, 2 previous studies20,21 in adults were limited because they considered either a wide range of Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition) (DSM-IV) symptoms nor how exposure to SHS might differentially affect mental health across at-risk subgroups. It is well established that tobacco use prevalence, patterns, and long-term outcomes differ across sex and race/ethnicity strata,20 with non-Hispanic blacks carrying a disproportionate burden of tobacco-related morbidity and mortality.21 In addition, male sex and non-Hispanic black race/ethnicity are associated with slower nicotine metabolism and with higher cotinine cutoff points to differentiate SHS exposure from personal smoking behaviors.22 Relative to male sex, female sex is associated with a different biological response to stress through the protective effects of estrogen.9 Given these variations, it is essential to consider how the association between SHS exposure and mental health may differ across subgroups.

This study builds on previous literature to examine the association between biologically confirmed SHS exposure and symptoms of DSM-IV major depressive disorder (MDD), generalized anxiety disorder (GAD), panic disorder, attention-deficit/hyperactivity disorder (ADHD), and conduct disorder using a nationally representative sample of US children and adolescents. Analyses are performed among the total population and across sex and race/ethnicity strata to assess differential patterns in the effects of SHS exposure on mental health. It was hypothesized that current SHS exposure is positively associated with DSM-IV symptoms and that this association varies across subgroups of sex and race/ethnicity even after adjusting for potential confounders, such as maternal smoking during pregnancy and allostatic load.
CHARACTERISTICS OF THE ELIGIBLE SAMPLE

The total size of the eligible sample was 2901. Sample characteristics are given in Table 1. Approximately 51% were male and 49% female. Most of the sample were non-Hispanic white (61.9%), followed by non-Hispanic black (14.8%), Mexican American (12.2%), and other races/ethnicities (11.1%). Respondents reported the highest mean number of DSM-IV symptoms for MDD (4.93), followed by ADHD (3.94), GAD (2.86), conduct disorder (1.34), and panic disorder (0.29).

ASSOCIATIONS BETWEEN SHS EXPOSURE AND DSM-IV SYMPTOMS

Associations between biologically confirmed SHS exposure and DSM-IV symptoms are given in Table 2. In all models, serum cotinine level was positively associated with symptoms of MDD, GAD, ADHD, and conduct disorder, while it was unassociated with symptoms of panic disorder. After adjusting for all covariates (model 3), serum cotinine level was most strongly associated with ADHD symptoms (b=.40), such that a 1-U increase in serum cotinine level (log transformed) translates into a 0.40 increase in ADHD symptoms. There was a slightly smaller, although still significant, association of serum cotinine level with symptoms of MDD (b=.22), conduct disorder (b=.18), and GAD (b=.16).

Stratified analyses showed that the association between serum cotinine level and DSM-IV symptoms differed across sex. Among male participants, adjusted regression analyses showed a statistically significant association between serum cotinine level and symptoms of MDD (b=.28), GAD (b=.17), ADHD (b=.38), and conduct disorder (b=.31) (Table 3). Among female participants, serum cotinine levels remained significantly associated only with symptoms of GAD (b=.17) and ADHD (b=.43).

Stratification by race/ethnicity showed marked differences in the association between serum cotinine level and DSM-IV symptoms across racial/ethnic subpopulations. Among non-Hispanic whites, there was a statistically significant association between serum cotinine level and symptoms of MDD (b=.34), GAD (b=.26), and ADHD (b=.51) (Table 4). Serum cotinine level was not statistically significant associated with any DSM-IV symptoms among non-Hispanic blacks and was associated only with conduct disorder (b=.15) among Mexican Americans.

ASSOCIATIONS BETWEEN SHS EXPOSURE AND DIAGNOSIS OF DSM-IV CONDITIONS

Owing to few positive cases, associations between serum cotinine level and diagnoses of DSM-IV MDD (n=15), GAD (n=9), and panic disorder (n=11) were not tested. There were sufficient positive cases for ADHD (n=201) and conduct disorder (n=54), although no attempt was made to conduct analyses stratified by sex or by race/ethnicity. In a model only adjusting for survey design, serum cotinine level was positively associated with ADHD (odds ratio, 1.15; 95% confidence interval, 1.03-1.27). However, when further controlling for maternal smoking during pregnancy, serum cotinine level was no longer associated with ADHD (odds ratio, 1.03; 95% confidence interval, 0.92-1.16), while maternal smoking during pregnancy was positively associated with ADHD (odds ratio, 2.62; 95% confidence interval, 1.38-4.33). However, in analyses stratified by ADHD diagnosis, serum co-
tinine level was positively associated with ADHD symptoms among participants without an ADHD diagnosis (b = .46, P < .001), while serum cotinine level was not associated with ADHD symptoms among participants with an ADHD diagnosis (b = .33, P = .11) after controlling for survey design and maternal smoking during pregnancy. Because a previous study26 among the same data set correlated maternal smoking during pregnancy, and allostatic load. However, this association differed across sex and race/ethnicity subpopulations, with the most apparent associations noted for male sex and non-Hispanic white race/ethnicity. Serum cotinine level was also positively associated with DSM-IV ADHD diagnosis; however, the association between serum cotinine level and ADHD diagnosis was attributed to maternal smoking during pregnancy. Serum cotinine level was associated with ADHD symptoms only among participants without an ADHD diagnosis.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Major Depressive Disorder</th>
<th>Generalized Anxiety Disorder</th>
<th>Panic Disorder</th>
<th>Attention-Deficit/Hyperactivity Disorder</th>
<th>Conduct Disorder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b Level</td>
<td>SE</td>
<td>P Value</td>
<td>b Level</td>
<td>SE</td>
</tr>
<tr>
<td>Male participants (n = 1238)</td>
<td>.28</td>
<td>.12</td>
<td>.03</td>
<td>.17</td>
<td>.07</td>
</tr>
<tr>
<td>Female participants (n = 1286)</td>
<td>.17</td>
<td>.09</td>
<td>.08</td>
<td>.17</td>
<td>.07</td>
</tr>
</tbody>
</table>

Table 4. Race/Ethnicity–Specific Associations Between Secondhand Smoke Exposure and DSM-IV Symptoms Among Children and Adolescents in the 2001 to 2004 NHANESa

<table>
<thead>
<tr>
<th>Variable</th>
<th>Major Depressive Disorder</th>
<th>Generalized Anxiety Disorder</th>
<th>Panic Disorder</th>
<th>Attention-Deficit/Hyperactivity Disorder</th>
<th>Conduct Disorder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b Level</td>
<td>SE</td>
<td>P Value</td>
<td>b Level</td>
<td>SE</td>
</tr>
<tr>
<td>Non-Hispanic white (n = 712)</td>
<td>.34</td>
<td>.11</td>
<td><.01</td>
<td>.26</td>
<td>.07</td>
</tr>
<tr>
<td>Non-Hispanic black (n = 826)</td>
<td>.02</td>
<td>.12</td>
<td>.84</td>
<td>.01</td>
<td>.05</td>
</tr>
<tr>
<td>Mexican American (n = 783)</td>
<td>.00</td>
<td>.19</td>
<td>.96</td>
<td>.06</td>
<td>.12</td>
</tr>
</tbody>
</table>

Abbreviations: DSM-IV, Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition); NHANES, National Health and Nutrition Examination Survey.a Race/ethnicity–specific models were adjusted for survey design, age, sex, poverty, migraine, asthma, hay fever, maternal smoking during pregnancy, and allostatic load.

COMMENT

To our knowledge, this is the first study to assess the association between biologically confirmed SHS exposure and mental disorder symptoms in a nationally representative sample of US children and adolescents. Secondhand smoke exposure was positively associated with symptoms of DSM-IV MDD, GAD, ADHD, and conduct disorder, but not panic disorder, among the total sample of nonsmokers even after adjusting for age, sex, race/ethnicity, poverty, migraine, asthma, hay fever, maternal smoking during pregnancy, and allostatic load.
Both SHS exposure and poor mental health are major public health problems among children and adolescents. Exposure to tobacco smoke among young children has been associated with several short-term and long-term health effects, including sudden infant death syndrome,27 respiratory complications,28-30 dental decay,31 metabolic syndrome,32 otitis media,33 and asthma33-35 among others. Furthermore, 2 longitudinal studies36,37 showed that maternal smoking is associated with increased risk of behavioral problems even after adjusting for confounding factors. The findings presented herein provide additional evidence on the harmful effects of SHS exposure on children and adolescents. Our results are consistent with data from previous cross-sectional36 and prospective6 studies in adults and suggest that exposure to SHS may precipitate the onset of or exacerbate mental disorder symptoms. Data herein further suggest that this association may differ across sex and race/ethnicity subgroups.

There are known variations in the prevalence, patterns of use, and outcomes of smoking across sex and race/ethnicity strata.38 Individual differences by sex and race/ethnicity in the associations between SHS exposure and DSM-IV symptoms may be explained by variations in cotinine metabolism39,40 or by other biological, social, or environmental factors that vary across sex and race/ethnicity strata and were unaccounted for in the models herein. However, our results also suggest that male sex and non-Hispanic white race/ethnicity may somehow confer greater vulnerability to mental health effects of SHS exposure. Future research is needed to clarify the biological or psychological mechanisms of associations between SHS exposure and mental health, as well as potential reasons for differential associations across sex and race/ethnicity strata.

In the case of ADHD diagnosis, our study findings differ from those of a 2010 study by Xu et al.41 They also used the 2001 to 2004 NHANES and found that serum cotinine level was positively associated with ADHD diagnosis among Mexican American children but was not associated with ADHD diagnosis among non-Hispanic white and black children even after adjusting for maternal smoking during pregnancy. The study by Xu et al had methodological limitations; ADHD was measured using a single-item question that asked parents whether a health care professional had ever diagnosed their child as having ADHD, and they did not use a cotinine cutoff point to measure SHS exposure. The differences in results between the 2 studies may be related to these measurement variations. Furthermore, current cigarette smokers were more likely to be retained in the analyses by Xu et al. Our findings suggest that the association between SHS exposure and ADHD diagnosis is attributable to in utero tobacco exposure. Recent results from a large longitudinal study by Ekblad et al12 suggest that in utero tobacco exposure may lead to adverse psychiatric conditions. A recent study by Cho et al15 among children in 5 Korean cities also found a positive association between SHS exposure and ADHD symptoms. Therefore, the association between SHS exposure and ADHD symptoms may only be significant at the subthreshold level vs at the diagnostic level.

Several limitations to our study must be considered when interpreting the results. These include the cross-sectional design, our inability to control for some potential confounders, and the possibility that intermittent smokers were included in the analyses. There is no established cutoff point for nonsmokers among persons younger than 12 years,22 and intermittent smokers of any age could have been retained in our analysis if they did not smoke in the 24 to 36 hours before their NHANES blood draw. Some of these participants would not have had detectable serum cotinine levels at the time of their NHANES participation because of the short half-life of this measure.44 Furthermore, we did not control for alcohol consumption because data on alcohol consumption in participants younger than 12 years were not collected in the NHANES. Another potential confounder that we were unable to control for in our analysis is maternal psychiatric history.45-47 That is, children with depressed mothers are more likely to have poor mental health.45-47 In addition, the source of SHS exposure is unknown (eg, mother, father, or other), and illicit drug use was not considered a covariate. Finally, our models included adjustment for allostatic load as a proxy control for psychological stress, which has been shown to be associated with risk of psychiatric symptoms.48 However, controlling for allostatic load did not weaken associations between serum cotinine level and DISC-IV symptoms, so it remains unclear if this measure appropriately controlled for psychological stress.

Despite these limitations, findings in the present study provide critical and much-needed data on associations of biologically confirmed SHS exposure with DSM-IV symptoms in a nationally representative sample of US children and adolescents. Our results have important public health implications. Only 26 states in the United States have banned smoking in all public places (such as bars and restaurants), despite evidence that comprehensive public smoking bans lead to reduced incidence of cardiovascular and respiratory conditions.49 Similar improvements in population-level mental health may be possible.49 Efforts to ban smoking in public places where children and adolescents are present, including all child care settings and schools, should continue, as well as increased efforts to develop interventions targeted directly at parents and designed to prevent SHS exposure in the homes of children and adolescents.50,51 Given the critical developmental period of childhood and adolescence, the effects of policy to reduce or ban smoking in public places and in the home may help prevent or reduce the progression of illness in at-risk individuals and alleviate the heavy burden of illness attributable not only to tobacco use but also to mental disorders.

Accepted for Publication: October 21, 2010.

Correspondence: Kathleen R. Merikangas, PhD, Genetic Epidemiology Research Branch, National Institute of Mental Health, National Institutes of Health, 35 Convent Dr, Room 1A201, Mail Stop Code 3720, Bethesda, MD 20892-3720 (merikank@mail.nih.gov).

Author Contributions: Study concept and design: Bandiera, Lee, and Merikangas. Acquisition of data: Bandiera, He, and Merikangas. Analysis and interpretation of

data: Bandiera, Kalaydjian Richardson, Lee, He, and Merikangas. Drafting of the manuscript: Bandiera, Kalaydjian Richardson, and Lee. Critical revision of the manuscript for important intellectual content: Bandiera, Kalaydjian Richardson, Lee, He, and Merikangas. Statistical analysis: Bandiera, Kalaydjian Richardson, and He. Study supervision: Merikangas.

Financial Disclosure: None reported.

Funding/Support: This study was supported in part by the National Institute of Mental Health, Intramural Research Program (Dr Merikangas). During the course of the study, Mr Bandiera received a summer fellowship through the National Hispanic Science Network on Drug Abuse, which is sponsored by the National Institute on Drug Abuse. Mr Bandiera completed his fellowship at the Section on Developmental Genetic Epidemiology, National Institute of Mental Health under the direction of principal investigator Merikangas. Mr Bandiera is also a recipient of predoctoral grant 1F31MH084567-01A1 from the National Institute of Mental Health. Dr Lee is also funded by a grant from the Flight Attendant Medical Research Institute.

Disclaimer: The views and opinions expressed in this article are those of the authors and should not be construed to represent the views of any of the sponsoring organizations or agencies of the US government. The National Health and Nutrition Examination Survey data are collected by the National Center for Health Statistics. All analyses, interpretations, and conclusions expressed in this article are those of the authors and not the National Center for Health Statistics, which is responsible only for the initial data.

Previous Presentation: This study was presented at the National Hispanic Science Network on Drug Abuse 2010 Annual Conference; September 30, 2010; New Orleans, Louisiana.