Results | The LTL (expressed in the telomere repeat copy number to the single gene copy number ratio) remained unchanged during and after the OC intake. In contrast, the LTL doubled while taking PioFluMet and returned to baseline after the PioFluMet intake was stopped (Figure). The LTL changes across treatment groups during 18 months related inversely to fasting insulinemia, body fat fraction by dual energy x-ray absorptiometry, and visceral and hepatic adiposity by magnetic resonance imaging (all r values were between −0.53 and −0.57; all P values were between 0.002 and 0.007). The ratio of circulating neutrophils to lymphocytes was first similar in treatment groups and remained similar in and between groups across 24 months. Noteworthy adverse effects were not encountered in either treatment group.

Discussion | Prolonged insulin sensitization (with PioFluMet) is emerging as a first approach with antiaging effects and includes a slow marked reversible increment of LTL in adolescent girls with HIAE.

A comparably marked LTL increment was reported on initiating the treatment with sitagliptin in older Chinese adults with type 2 diabetes mellitus.5 In that study, telomere lengths were in the subnormal range at the start of treatment and increased to a healthy range within 2 months in parallel with improved glucose level control. In our young study population, telomere lengths were in the healthy range at the start of treatment and increased to the supranormal range after a longer intervention (12 to 18 months) in the absence of diabetes mellitus.

Future studies should disclose whether other insulin-sensitizing interventions (such as flutamide being replaced by spironolactone) can also elicit telomere lengthening in late adolescents with hyperinsulinaemic androgen excess in adolescent girls. 

Conflict of Interest Disclosures: None reported.


A Living Systematic Review of Nebulized Hypertonic Saline for Acute Bronchiolitis in Infants

Grewal and Klassen in JAMA Pediatrics note the frustrations in interpreting evidence about bronchiolitis. Evidence is spread across a prior meta-analysis and other trials. The Grewal and Klassen editorial encourages living systematic reviews that are updated as new trials emerge. We use the topic of nebulized hypertonic saline for bronchiolitis to propose the method of a living systematic review.

Methods | In this meta-analysis, we started by including the same trials in the Cochrane review by Zhang et al.2 We then searched for newer trials in the Cochrane Central Register of Controlled Trials and articles in Web of Science that cited the Zhang et al study.2 Our methods are detailed online at the living review (http://openmetaanalysis.github.io/Hypertonic-Saline-for-Bronchiolitis/).

Results | We identified 11 new trials (4 only available at http://clinicaltrials.gov).1 The meta-analysis showed that hypertonic saline significantly reduced the length of stay (LOS) among hospitalized infants. Heterogeneity was largely owing to variation in LOS in the control groups of trials. Benefit was confined to studies with a long LOS; however, even within this group study, results of recent trials were negative. Among infants given multiple doses, symptoms were improved and hospitalization was reduced. Forest plots, meta-regressions, and risk of bias assessment are available online. Quality of evidence as assessed by the GRADEprofiler was low owing to imprecision and other factors detailed in the GRADEprofiler online.

Discussion | Prior research was comprehensively summarized by the Cochrane review. The addition of the newer trials attenuated the results of all outcomes. However, all outcomes were statistically significant owing to reduction in hospitalization in the subgroup analysis of infants who received multiple doses of treatment. The reduction in LOS was confined to older trials with a longer LOS. We rated the quality of evidence lower than the Cochrane review. This is likely owing to

Francis de Zegher, MD, PhD
Marta Díaz, MD, PhD
Lourdes Ibáñez, MD, PhD

Author Affiliations: Department of Development and Regeneration, University of Leuven, Leuven, Belgium (de Zegher); Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain (Díaz, Ibáñez); Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain (Díaz, Ibáñez).

Corresponding Author: Francis de Zegher, MD, PhD, Department of Development and Regeneration, University of Leuven, Herestraat 49, 3000 Leuven, Belgium (francis.dezegher@uzleuven.be).


Author Contributions: Dr de Zegher had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: de Zegher, Díaz. Acquisition, analysis, or interpretation of data: All authors. Drafting of the manuscript: de Zegher. Critical revision of the manuscript for important intellectual content: Díaz, Ibáñez. Administrative, technical, or material support: Díaz. Study supervision: All authors.
Available evidence, although low quality, suggests that hypertonic saline for bronchiolitis decreases the LOS for hospitalized children and may reduce symptoms and the rate of hospitalization. We encourage colleagues to help maintain this review, create other reviews, and advance the methods of living systematic reviews. Analyses and figures will be updated at http://openmetaanalysis.github.io/Hypertonic-Saline-for-Bronchiolitis/ as new trials are published.

Robert G. Badgett, MD
Mohinder Vindhyal, MD
Jason T. Stirnaman, MLS
C. Michael Gibson, MD
Rim Halaby, MD

Author Affiliations: Department of Internal Medicine, Kansas University School of Medicine, Wichita (Badgett, Vindhyal); Department of Preventive Medicine and Public Health, Kansas University School of Medicine, Wichita (Badgett); Department of Pediatrics, Kansas University School of Medicine, Wichita (Vindhyal); A. R. Dykes Library, Kansas University School of Medicine, Wichita (Stirnaman); PERFUSE Study Group, Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (Gibson, Halaby).

Corresponding Author: Robert G. Badgett, MD, Departments of Internal Medicine, Preventive Medicine, and Public Health, Kansas University School of Medicine, 1010 N Kansas St, Wichita, KS 67214-3199 (rbadgett@kumc.edu).


Author Contributions: Dr Badgett had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Badgett, Stirnaman.

Acquisition, analysis, or interpretation of data: Badgett, Vindhyal, Gibson, Halaby.

Drafting of the manuscript: Badgett, Vindhyal, Stirnaman.

Critical revision of the manuscript for important intellectual content: Badgett, Stirnaman, Gibson, Halaby.

Statistical analysis: Badgett, Vindhyal, Gibson.

Administrative, technical, or material support: Badgett, Vindhyal, Stirnaman.

Study supervision: Badgett.

Conflict of Interest Disclosures: None reported.

Additional Contributions: We acknowledge the patient assistance provided directly and indirectly by Jeroen Ooms, PhD, Department of Statistics, University of California Los Angeles, creator of https://www.opencpu.org/; and Guido Schwarzer, PhD, Institute for Medical Biometry and Statistics, Medical Center, University of Freiburg, Germany, author of http://cran.r-project.org/web/packages/meta/. Neither individual received financial compensation.


