Illness Among Schoolchildren During Influenza Season

Effect on School Absenteeism, Parental Absenteeism From Work, and Secondary Illness in Families

Kathleen M. Neuzil, MD, MPH; Cynthia Hohlbein, RN; Yuwei Zhu, MD, MS

Background: High attack rates of Influenzavirus among school-aged children tend to be expected to cause significant disruption of usual activities at school and at home.

Objective: To quantify the effect of influenza season on illness episodes, school absenteeism, medication use, parental absenteeism from work, and the occurrence of secondary illness in families among a cohort of children enrolled in an elementary school during the 2000-2001 influenza season.

Design: Prospective survey study.

Setting: Kindergarten through eighth grade elementary school in Seattle, Wash.

Patients or Other Participants: All children enrolled in the school were eligible for the study. Study participants were 313 children in 216 families.

Main Outcome Measures: The primary outcome measure was missed school days. Secondary outcomes measures included total illness episodes, febrile illness episodes, medication usage, physician visits, parental workdays missed, and secondary illnesses among family members of children in the study cohort. Differences between the rates of study events among participants when influenza was circulating and the event rates during the winter season when influenza was not circulating were used to calculate influenza-attributable excess events.

Results: Total illness episodes, febrile illness episodes, analgesic use, school absenteeism, parental industrial absenteeism, and secondary illness among family members were significantly higher during influenza season compared with the noninfluenza winter season. For every 100 children followed up for this influenza season, which included 37 school days, an excess 28 illness episodes and 63 missed school days occurred. Similarly, for every 100 children followed up, influenza accounted for an estimated 20 days of work missed by the parents and 22 secondary illness episodes among family members.

Conclusion: Influenza season has significant adverse effects on the quality of life of school-aged children and their families.

Arch Pediatr Adolesc Med. 2002;156:986-991

I

NFLUENZA CAUSES annual winter epidemics of respiratory disease that affect all age groups and all segments of the population. Serious complications and hospitalizations due to Influenzavirus occur preponderantly in persons younger than 2 years, persons 65 years and older, and persons with certain chronic medical conditions. Deaths occur preponderantly in persons older than 70 years.1,2 However, even among otherwise healthy individuals, the health and economic consequences of influenza are substantial. Annual influenza attack rates vary from 10% to 30% in adults and 20% to 50% in children during interpandemic years, and may approach 70% during pandemic years.3,9,8,10 Among adults, influenza infections lead to increased health care visits, medication usage, work loss, and restricted activity days.11-14

While the epidemic nature of influenza and the high attack rates in children would be expected to cause significant disruption of usual activities at school and at home, data on the effects of influenza on school-aged children are limited. In a study of healthy children aged 5 through 14 years enrolled in Tennessee Medicaid, influenza was associated with a health care visit in approximately 8% of the children and with an antibiotic prescription in approximately 7%.3 This study likely underestimated the effect of influenza on this population, as it did not examine the effects of influenza on school-aged children who did not seek medical care. Additional adverse effects of influenza in this population include the dis-
comfort of the illness, increased over-the-counter medication usage, and school absenteeism.3,15 Influenza in a child may also affect the family. Working parents may stay home to care for a sick child, leading to industrial absenteeism, or sick children may transmit \textit{Influenzavirus} to other family members.17-20

Considering the potential for influenza to substantially affect the quality of life of children and their families, targeting school-aged children for prevention or treatment of influenza may reduce the individual and societal burden of this disease. This prospective study was designed to quantify the effect of influenza season on school and industrial absenteeism, on health care and medication usage, and on secondary illnesses within families, among a cohort of schoolchildren and their families.

PARTICIPANTS AND METHODS

STUDY DESIGN

We conducted a 1-year prospective study of the effect of influenza season on a cohort of children enrolled in a large elementary school in Seattle, Wash. Baseline surveys obtained information on household size, prevalence of childhood asthma, and receipt of influenza vaccine. When a child was absent from school during the winter season, from December 4, 2000, through April 13, 2001, surveys were sent to the child’s parent or guardian to determine the reason for the absence, to characterize the types and severity of illnesses that occurred during the winter season, and to determine the effect of the illness on medication usage, physician visits, parental industrial absenteeism, and secondary illnesses within the family.

This study was approved by the Human Subjects Division at the University of Washington. Baseline surveys and informed consent were sent to all parents at the school. Parents chose to enroll in the study by returning the baseline survey and the accompanying informed consent. After receiving the informed consent from the parents, two of us (K.M.N., C.H.) obtained assent from the children. These children and their families constituted the study population.

SOURCE POPULATION

The study school is a parochial elementary school (grades kindergarten-8) located in central Seattle and draws children from 24 ZIP codes within the city, and 14 ZIP codes from the surrounding suburbs. The school represents an ethnically and socioeconomically diverse population of children. Of a total enrollment of 611 children, 18% are nonwhite; almost 20% receive financial aid.

DATA COLLECTION

Baseline Data

Baseline data on household size, ages of all household members, and receipt of influenza vaccine by each member of the family was collected from all of the 216 families who chose to participate. To determine the prevalence of asthma among the schoolchildren, the survey also included a question asking whether a physician had ever diagnosed asthma for the child.

Illness Data

Coded, computerized absentee records were obtained by the study coordinator (C.H.) from the school office at the end of each week. Children who were participating in the study were identified. From December 4, 2000, through April 13, 2001 (the day before spring break), the parent or guardian of a child listed on the computerized absentee records was sent a survey inquiring about the child’s reason for missing school. If the child missed school for an illness, then the parent completed the remainder of the form, which asked details about the symptoms of the illness, medication usage, health care use, parental industrial absenteeism, and illnesses among other household members. The following symptoms were included on the survey: fever, coryza, sore throat, cough, myalgia, earache, headache, nausea, vomiting, and diarrhea. Parents returned the surveys in stamped, self-addressed envelopes to the study nurse (C.H.). If the survey was not received by the study nurse within 2 weeks, a telephone call was placed, and the details of the absence were ascertained by telephone interview.

MAIN OUTCOME MEASURES

Influenza season was defined by prospective viral surveillance at the University of Washington Clinical Virology Laboratory at Children’s Hospital and Medical Center.13 Influenza season was defined as the first day of the first week in which there were at least 5 isolates of \textit{Influenzavirus}, until the last day of the last week in which there were at least 5 isolates of \textit{Influenzavirus}.

DATA ANALYSIS

The expected number of study outcomes during influenza season was calculated based on the rate of study outcomes observed during the noninfluenza winter season. The observed number of study events during influenza season was then compared with the expected number, and a relative risk was calculated. Influenza-attributable excess events were calculated by subtracting the expected outcomes from the observed outcomes during influenza season. An excess event rate per 100 children was then generated by dividing the total number of children in the cohort (313), then multiplying by 100. The 95% confidence intervals were generated using StatXact (Cytel Software, Cambridge, Mass). χ^2 or Fisher exact test was used as appropriate for symptom comparison between the influenza and noninfluenza winter season. In an attempt to control for the confounding effect of respiratory syncytial virus (RSV) circulation, a nested analysis was performed that was restricted to January 8, 2001, through March 31, 2001, during which the mean number of RSV isolates per week was equivalent during the influenza and noninfluenza winter season. All calculations other than the 95% confidence interval were done using SAS version 8.0 (SAS Institute Inc, Cary, NC).

RESULTS

Of 428 families with 611 children enrolled at the school, 216 families with 313 children chose to participate in the study. Baseline characteristics of the study population are

©2002 American Medical Association. All rights reserved.
RSV isolates per week was higher in influenza season than in
the noninfluenza winter season, at 37 and 23 per week,
respectively. From January 8, 2001, through March 31,
2001, the mean number of RSV isolates per week was 37
during both influenza season and the noninfluenza
winter season. Parainfluenza virus circulated at relatively
constant levels throughout the study period (Figure).

OUTCOME RATES

Throughout the school year, weekly rates of absentee-
ism were monitored. The weekly percentage of children
in the study who missed school was similar to the per-
centage of all students who missed school (data not
shown). From December 4, 2000, through April 13, 2001,
on notification by the school that a study participant
missed school, or that the child did miss school but was
not ill. On 444 surveys, the parents confirmed that the
child missed school owing to an illness.

Of the 444 illness episodes, 194 (43.7%) occurred
during the noninfluenza winter season, and 250 (56.3%)
ocurred during influenza season. Among the 313 children
monitored throughout the 44 days of the noninfluenza
season, 194 illnesses occurred during the 13772 child-days
of follow-up. Using this rate as the background rate, the
expected number of illness episodes during influenza
season was calculated and compared with the observed num-
ber. As given in Table 2, the 250 reported illnesses dur-
ing influenza season exceeded the expected number by more
than 50%. The 87 excess illness events occurring among
313 children followed up during winter represents an es-
timated influenza attack rate of 28%. In addition to total
illness episodes, days of school missed per episode was
higher during influenza season than during the noninflu-
enza winter season. Febrile illnesses increased during in-
fluenza season, with the difference in illness episodes en-
tirely accounted for by illness episodes with fever. Analgesic
use during influenza season, and parental work absentee-
ism, were likewise higher than expected during influenza
season. The observed numbers of antibiotic prescriptions
and health care visits were not statistically significantly
greater than expected during influenza season (Table 2).

To determine the excess event rate for outcomes dur-
ing influenza season, the expected rate during influenza
season was subtracted from the observed rate (Table 2).
It is estimated that for every 100 children followed up
for this influenza season, which included 37 school days,
an additional 28 illness episodes and 63 missed school
days would occur. Similarly, for every 100 children fol-
lowed up, influenza accounted for an estimated 20 ex-
cess days of work missed by the parents. When the study
was restricted to periods of peak RSV activity, from Janu-
ary 8, 2001, through March 31, 2001, estimates of influ-
enza-attributable events were similar (data not shown).

During influenza season, parents were much more
likely to report illness in other household members in
the 3 days following the child’s absence from school com-
pared with the noninfluenza winter season. An esti-

given in Table 1. Participation was equally distributed
through all of the grades—with a low of 9% of the par-
ticipants being second graders to a high of 14% of par-
ticipants being eighth graders. The prevalence of asthma
among this study population was 12%, and 9 (24%) of
37 children with asthma received influenza vaccine dur-
ing the study year. Among all participants, 6% of the study
children, 25% of the parents, 37% of the grandparents,
and 5% of other household members reported receiving
influenza vaccine.

INFLUENZA SEASON

Influenza season occurred in the Seattle area from Jan-
uary 8, 2001, through March 2, 2001. Influenza A
(H1N1) and influenza B viruses circulated during this
period. Influenza season included 37 school days. The
noninfluenza winter season occurred from December
4, 2000, through January 5, 2001, and March 5, 2001,
through April 13, 2001, representing 44 school days.
Respiratory syncytial virus circulated in the Seattle area
during the entire study period, from December 4, 2000,
through April 13, 2001 (Figure). The mean number of

Table 1. Baseline Characteristics of 313 Children
in 216 Families Participating in Illness Survey Study*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Families</td>
<td></td>
</tr>
<tr>
<td>Children <18 y residing in the household</td>
<td></td>
</tr>
<tr>
<td>With 1 child</td>
<td>22</td>
</tr>
<tr>
<td>With 2 children</td>
<td>49</td>
</tr>
<tr>
<td>With 3 children</td>
<td>23</td>
</tr>
<tr>
<td>With >4 children</td>
<td>6</td>
</tr>
<tr>
<td>Single-parent household</td>
<td>13</td>
</tr>
<tr>
<td>Grandparents residing in the household</td>
<td>3.3</td>
</tr>
<tr>
<td>Children</td>
<td>10 (6-15)</td>
</tr>
<tr>
<td>Median grade (range)</td>
<td>4 (kindergarten-8)</td>
</tr>
<tr>
<td>Those who have asthma</td>
<td>12</td>
</tr>
<tr>
<td>Those who ever received influenza vaccine</td>
<td>16</td>
</tr>
<tr>
<td>Those who have received influenza vaccine during this influenza season</td>
<td>6</td>
</tr>
</tbody>
</table>

*Data are given as percentages unless otherwise indicated.
every 100 children followed up during this influenza season (Table 2). Of the 126 household members who became ill during influenza season within 3 days of the child’s illness, 46% were parents, 33% were siblings aged 5 to 17 years, 20% were siblings younger than 5 years, and fewer than 1% were grandparents.

ILLNESS CHARACTERISTICS

Fever was reported as a component of 67% of illnesses during influenza season compared with 49% of illnesses during the noninfluenza winter season (P = .001). Similarly, febrile respiratory illness (defined as fever with at least one of the following symptoms: cough, runny nose, or sore throat) was significantly more common in influenza season compared with the noninfluenza winter season (57% vs 44%, P = .04). The systemic symptoms of myalgia and headache were significantly more frequent during influenza season compared with the noninfluenza winter season among children aged 11 to 14 years, but not among younger children. There were no differences in the prevalence of nausea, vomiting, diarrhea, or earache among illnesses in any age group occurring during the influenza and noninfluenza winter season.

This Seattle population–based study examined the effect of the influenza season on multiple and diverse outcomes among schoolchildren and their families during the 2000-2001 winter season. Illness during influenza season was common, with an estimated 87 excess illness events occurring among 313 children followed up during the winter, for an attack rate of 28%. This likely represents a minimum estimate, as it only included children who were sufficiently ill to miss a day of school, and did not include illnesses that occurred only on weekends or school holidays. This attack rate is consistent with other studies that report symptomatic attack rates of 23% to 48% among school-aged children during interpandemic years.22-23 The total number of school days missed during influenza season was likewise higher than expected based on the noninfluenza winter season baseline. We estimated that for this influenza season, which encompassed 37 school days, 63 excess school days were missed for every 100 children followed up. Estimates of school days missed per 100 children due to influenza infection from a randomized, controlled trial of influenza vaccine among schoolchildren in Russia were slightly higher at 79 school days missed for every 100 unvaccinated children.26

The increase in absenteeism for illness in our cohort was paralleled by increases in febrile illnesses and analgesic use. That fever is a major component of influenza illness in children is well established.27,28 Health care visits and antibiotic use did not increase significantly during influenza season compared with the noninfluenza winter season. This is in contrast to other studies that demonstrate significant excess outpatient health care visits and antibiotic prescriptions among school-aged children during influenza season.3 The reasons for this discrepancy are unclear, but may relate to differences in parents’ knowledge and attitudes about viral illness, the threshold for bringing children to a physician, or our relatively small sample size.

The effect of influenza season on this cohort extended beyond illness in the schoolchildren. In this study, significant excess industrial absenteeism occurred among the parents, who missed almost 1 day of work for every 3 days of school missed by a child attributable to influenza infection. National data report that 57% of mothers and 97% of fathers of school-aged children work full-time and, thus, may need to miss work or hire alternative care if their children miss school.16 Presumably, our study population included fewer households with 2 working parents, or parents with more flexibility in their schedules or alternative child care providers. Rates of parental absenteeism could be higher in other populations. Our estimates of parental industrial absenteeism were based solely on missing work to care for a sick child, and did not include work that may have been missed if the child transmitted influenza to the parent.

Table 2. Effect of Winter Illness on School and Family Among 313 Schoolchildren Monitored From December 1, 2000, Through April 13, 2001

<table>
<thead>
<tr>
<th>Variable</th>
<th>Events During the Noninfluenza Winter Season (44 School Days)</th>
<th>Events During Influenza Season (37 School Days)</th>
<th>Influenza-Attributable Events per 100 Children†</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of illness episodes</td>
<td>194</td>
<td>163</td>
<td>27.8</td>
</tr>
<tr>
<td>Total No. of days missed</td>
<td>343</td>
<td>288</td>
<td>62.9</td>
</tr>
<tr>
<td>No. of febrile illnesses</td>
<td>95</td>
<td>80</td>
<td>28.1</td>
</tr>
<tr>
<td>No. of antibiotic courses</td>
<td>23</td>
<td>19</td>
<td>-0.64</td>
</tr>
<tr>
<td>No. of analgesics used</td>
<td>143</td>
<td>120</td>
<td>24.0</td>
</tr>
<tr>
<td>No. of health care visits</td>
<td>54</td>
<td>45</td>
<td>4.2</td>
</tr>
<tr>
<td>Days of work missed by parent</td>
<td>116</td>
<td>97</td>
<td>19.8</td>
</tr>
<tr>
<td>No. of household members ill in 3 days after absence</td>
<td>69</td>
<td>58</td>
<td>21.7</td>
</tr>
</tbody>
</table>

*Values indicate the comparison of the rate of events during influenza season with the rate of events during the noninfluenza winter season. CI indicates confidence interval.
†Values were calculated by subtracting the expected outcomes from the observed outcomes during influenza season. An excess event rate per 100 children was then generated by dividing the total number of children in the cohort (N = 313), then multiplying by 100.
The effect of influenza varies from year to year, and may be influenced by circulating strains and the underlying immunity in the population. While in adults morbidity is generally believed to be greatest when H3N2 viruses are circulating, the effect of different viral strains on morbidity in school-aged children is not well established, as all 3 strains may cause high attack rates or serious illness. Studies that include multiple influenza seasons are needed to adequately address this issue.

CONCLUSIONS

Among a cohort of children followed up during the winter season, total illness episodes, school days missed, workdays missed by parents, and subsequent illnesses among household members were significantly increased when Influenzavirus circulated in the community. These data should aid pediatric health care providers and parents when deciding whether to immunize a healthy school-aged child with influenza vaccine. When planning important school events during influenza season, school administrators should be cognizant of the potential for significant increases in school absenteeism. Finally, this study reinforces the recommendation to vaccinate children if they reside in households with persons who are at increased risk for complications of Influenzavirus, to reduce the potential for transmission.

Accepted for publication May 10, 2002.

This study was funded through a research grant from GlaxoWellcome Worldwide Epidemiology. GlaxoWellcome Worldwide Epidemiology had no role in the design, conduct, analysis, or interpretation of the data and did not review or approve the manuscript prior to submission.

We are indebted to the students, parents, and staff at St. Joseph’s School for their enthusiastic participation in this study, and to Anne Cent, Children’s Hospital and Regional Medical Center, Seattle, for her dedication to organizing and maintaining the viral surveillance data.

Corresponding author and reprints: Kathleen M. Neuzil, MD, MPH, University of Washington School of Medicine, Veterans Affairs Puget Sound Health Care System, 1660 S Columbia Way, Seattle, WA 98108 (e-mail: kneuzil@u.washington.edu).

REFERENCES
