Fasting Plasma Glucose Levels Within the Normoglycemic Range in Childhood as a Predictor of Prediabetes and Type 2 Diabetes in Adulthood

The Bogalusa Heart Study

Quoc Manh Nguyen, MD, MPH; Sathanur R. Srinivasan, PhD; Ji-Hua Xu, MD; Wei Chen, MD, PhD; Gerald S. Berenson, MD

Objectives: To determine whether childhood elevated fasting plasma glucose (FPG) levels within the normoglycemic range predict diabetes in adulthood.

Design: Retrospective cohort study.

Setting: Community of Bogalusa, Louisiana.

Participants: Normoglycemic (n=1723), prediabetic (n=79), and type 2 diabetic (n=47) adults aged 19 to 44 years followed up serially for an average of 21 years since childhood.

Main Exposures: Association of elevated baseline childhood FPG levels with the prediabetic or diabetic status at the last survey in adulthood.

Main Outcome Measures: Receiver operating characteristic analysis and longitudinal logistic regression odds ratios.

Results: The prevalent rate of adult diabetes status by quartiles of baseline childhood FPG levels showed an adverse trend for prediabetes (P < .001) and diabetes (P = .03), with an apparent threshold occurring at or above the 50th percentile (86 mg/dL). Regarding the predictive value of the above threshold, the area under the receiver operating curve analysis yielded a C value of 0.855 for prediabetes and 0.789 for diabetes models, with sensitivity and specificity, respectively, of 76.9% and 85.2% for prediabetes and 75.0% and 76.0% for diabetes. In a multivariate analysis that included anthropometric, hemodynamic, and metabolic variables from childhood to adulthood and baseline childhood FPG status (≥ vs <50th percentile), individuals with elevated childhood FPG levels were 3.40 times more likely to develop prediabetes (P < .001) and 2.06 times more likely to develop diabetes (P = .05) as adults.

Conclusion: The fact that elevated FPG level in childhood, even within the normoglycemic range, is a predictor of type 2 diabetes in younger adulthood has implications for health care policy.

Arch Pediatr Adolesc Med. 2010;164(2):124-128

W HILE 19 MILLION people have type 2 diabetes mellitus, 54 million individuals show impaired fasting glucose as adults, which may represent a prediabetic state. This carbohydrate-insulin imbalance becomes one of the most common causes of death in the United States. It is also recognized that cardiovascular morbidity and mortality risks are elevated in individuals with relatively increased fasting plasma glucose (FPG) levels within the reference range.

The American Diabetes Association (ADA) has lowered the diagnostic cutoff point for impaired fasting glucose from 110 mg/dL to 100 mg/dL (to convert to millimoles per liter, multiply by 0.0555) to improve prediction of type 2 diabetes. However, the current criteria for diagnosis of type 2 diabetes set by the ADA are not age specific. Studies have recently demonstrated that higher plasma glucose levels within the normoglycemic range might be a predictor of diabetes, although it raises controversy regarding the implications for health care policy.

For editorial comment see page 198
association between fasting glucose levels in the reference range and type 2 diabetes mellitus has been described on single baseline measurements for younger adults and older age groups, such data on long-term, longitudinal, and progressive changes in the cardiometabolic risk variables from childhood to younger adulthood are scant. This study examined the prediction of normal FPG levels for the development of type 2 diabetes for a 21-year period beginning in childhood.

METHODS

STUDY POPULATION

The Bogalusa Heart Study is being conducted in the semirural, biracial (65% white and 35% black) community of Bogalusa, Louisiana. Between 1978 and 1994, 6 cross-sectional studies of school-aged children were conducted. In addition, 8 cross-sectional surveys were conducted between 1978 and 2002 with young adults who have been examined previously as children. The details of the study design, participation, and protocols were described elsewhere. It consists of multiple cross-sectional studies that resulted in serial observations from childhood to young adulthood, allowing longitudinal analyses. A total of 1849 fasting adult subjects (68% white; 42% male) were selected from the last 3 surveys (1995 to 2002) of adults for this retrospective cohort study. At the baseline examination, the children with a history of treatment of diabetes mellitus or who had a fasting glucose level of 100 mg/dL or higher were excluded. At the initial screening, the mean (SD) age was 10.8 (4.0) years (range, 4 to 18 years). At the most recent screening, the mean (SD) age was 31.9 (6.5) years (range, 19 to 44 years). The mean follow-up interval was 21 years. The number of screenings and follow-up visits between childhood and adulthood ranged from 2 to 9 times. In all, 91% of subjects were screened 3 or more times and 63%, 4 to 6 times, with a total of 9202 observations. Based on the data at the last survey, adult subjects were classified as normoglycemic, prediabetic, or diabetic according to the ADA criteria. Individuals were considered normoglycemic (n=1723) if they had a fasting glucose level of 99 mg/dL or lower; prediabetic (n=79), between 100 and 125 mg/dL; or diabetic (n=47), they (1) had a fasting glucose level of 126 mg/dL or higher or (2) had a history of treatment for the condition. The institutional review board of the Tulane University Health Sciences Center approved the study and consent forms used for this retrospective study. At the baseline examination, 126, 426, and 306 children with a history of treatment of diabetes mellitus, prediabetes, and diabetes were included, respectively.

LABORATORY ANALYSES

Cholesterol and triglycerides levels were initially measured using chemical procedures on a Technicon Autoanalyzer II (Technicon Instrument Corporation, Tarrytown, New York) according to the laboratory manual of the Lipid Research Clinics Program. Later, these variables were determined by enzymatic procedures on the Abbott VP instrument (Abbott Laboratories, North Chicago, Illinois) and on the Hitachi 902 Automatic Analyzer (Roche Diagnostics, Indianapolis, Indiana) afterward. Both chemical and enzymatic procedures met the performance requirements of the Lipid Standardization Program of the Centers for Disease Control and Prevention, which has routinely monitored the precision and accuracy of cholesterol, triglyceride, and high-density lipoprotein (HDL) cholesterol measurements since the beginning of this study. Serum lipoprotein cholesterol levels were analyzed using a combination of heparin-calcium precipitation and agar-agarose gel electrophoresis procedures. The intraclass correlation coefficients between the blind duplicate (10% random sample) values ranged from 0.86 to 0.98 for HDL cholesterol, 0.86 to 0.98 for low-density lipoprotein (LDL) cholesterol, and 0.88 to 0.99 for triglycerides. Plasma glucose was measured initially by a glucose oxidase method using a Beckman Instant Glucose Analyzer (Beckman Instruments, Palo Alto, California). After 1991, glucose was measured in adults using a multichemistry (SMAC20) profile by enzymatic procedures using the multichannel Olympus AU-5000 Analyzer (Olympus, Lake Success, New York). Plasma immunoreactive insulin levels were measured by a commercial radioimmunoassay kit (Phadebas; Pharmacia Diagnostics, Piscataway, New Jersey). The intraclass correlation coefficients between blind duplicate values ranged from 0.94 to 0.98 for insulin and 0.86 to 0.98 for glucose. In addition, an index of insulin resistance was calculated according to the homeostasis model assessment of insulin resistance (HOMA-IR) formula, HOMA-IR = insulin (microunits per milliliter) × glucose (millimoles per liter)/22.5. This model was considered useful in assessing insulin resistance in epidemiological studies.

STATISTICAL ANALYSIS

All statistical analyses were performed with SAS version 9.1 (SAS Institute, Cary, North Carolina). In the analyses, the race and sex groups were combined to increase statistical power and to simplify the presentation. Continuous variables were tested for normality using a Kolmogorov-Smirnov test. Values of triglycerides, glucose, insulin, and HOMA-IR were log transformed to improve normality, as applicable. General linear models were used to examine the cardiometabolic risk factor variables by status of adult diabetes, adjusted for age, sex groups, and race. The distribution of childhood fasting glucose was split by the median (86 mg/dL) to define high and low values. The trends of adult diabetes status by children FPG quartile levels were examined using the Cochran-Armitage trend test. Longitudinal multivariate logistic regression analyses (generalized equation estimation method) were used to determine which longitudinal changes in risk variables since childhood predicted adult diabetes status. Model 1 included the 50th percentile or higher vs lower than the 50th percentile (reference) of baseline childhood glucose levels as categorical variables, adjusted for age, sex groups, race, and sex × race interaction, as applicable. Model 2 added BMI and triglycerides to assess their potential roles as confounding fac-
Mean levels of anthropometric, hemodynamic, and metabolic variables at baseline (childhood) are presented in Table 1. Baseline cardiometabolic characteristics of children within the fasting normoglycemic range by diabetes status in adulthood.

Table 1. Baseline Cardiometabolic Characteristics of Children Within the Fasting Normoglycemic Range by Diabetes Status in Adulthood

<table>
<thead>
<tr>
<th>Childhood Variable</th>
<th>Normoglycemia (n=1723)</th>
<th>Prediabetes (n=79)</th>
<th>Diabetes (n=47)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y<sup>a</sup></td>
<td>10.7 (4.0)</td>
<td>12.4 (3.9)<sup>b</sup></td>
<td>12.4 (4.2)<sup>c</sup></td>
</tr>
<tr>
<td>BMI</td>
<td>18.2 (3.8)</td>
<td>19.2 (3.3)</td>
<td>22.0 (6.0)<sup>b</sup></td>
</tr>
<tr>
<td>Subscapular skin</td>
<td>12.5 (6.6)</td>
<td>13.8 (6.3)</td>
<td>17.0 (8.2)<sup>b</sup></td>
</tr>
<tr>
<td>fold, mm</td>
<td>100.5 (10.9)</td>
<td>104.4 (11.6)</td>
<td>106.4 (12.6)<sup>d</sup></td>
</tr>
<tr>
<td>Systolic BP, mm Hg</td>
<td>74.6 (9.3)</td>
<td>77.6 (10.4)</td>
<td>78.6 (9.4)</td>
</tr>
<tr>
<td>MAP, mm Hg</td>
<td>81.7 (17.6)</td>
<td>83.8 (22.0)</td>
<td>52.3 (18.5)<sup>b</sup></td>
</tr>
<tr>
<td>HDL cholesterol, mg/dL</td>
<td>78.8 (24.9)</td>
<td>89.5 (26.0)</td>
<td>92.1 (30.7)</td>
</tr>
<tr>
<td>LDL cholesterol, mg/dL</td>
<td>64.3 (31.6)</td>
<td>67.1 (29.5)</td>
<td>79.2 (32.1)<sup>c</sup></td>
</tr>
<tr>
<td>Triglycerides, mg/dL</td>
<td>1.43 (5.05)</td>
<td>1.38 (1.70)</td>
<td>2.31 (3.48)</td>
</tr>
<tr>
<td>Glucose, mg/dL</td>
<td>84.6 (7.9)</td>
<td>88.4 (7.8)<sup>c</sup></td>
<td>87.2 (6.7)</td>
</tr>
<tr>
<td>Insulin, µIU/mL</td>
<td>7.72 (5.62)</td>
<td>10.68 (10.62)</td>
<td>11.68 (8.54)</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>1.8 (1.4)</td>
<td>2.3 (2.8)</td>
<td>3.0 (2.3)</td>
</tr>
</tbody>
</table>

Abbreviations: BMI, body mass index (calculated as weight in kilograms divided by height in meters squared); BP, blood pressure; HDL, high-density lipoprotein; HOMA-IR, homeostasis model assessment of insulin resistance; LDL, low-density lipoprotein; MAP, mean arterial pressure.

^a P values for age were adjusted for race and sex; all others adjusted for age, race, and sex.

^b Statistically significant difference from normoglycemia; P < .001.

^c Statistically significant difference from normoglycemia; P < .01.

^d Statistically significant difference from normoglycemia; P < .05.

RESULTS

Mean levels of anthropometric, hemodynamic, and metabolic variables at baseline (childhood) are presented in Table 1 by diabetes status in adulthood. The prediabetic group vs normoglycemic groups displayed significantly higher age; the diabetic group, higher age, BMI, subscapular skin fold, systolic blood pressure, and triglycerides, and lower HDL cholesterol.

The prevalence rate of adult diabetes status by quartiles of childhood fasting plasma glucose levels within the normoglycemic range in the Bogalusa Heart Study. Levels of fasting plasma glucose according to the quartiles were less than 80 mg/dL, (to convert to millimoles per liter, multiply by 0.0555) for quartile 1; 80 to 85 mg/dL, quartile 2; 86 to 90 mg/dL, quartile 3; and 91 to 99 mg/dL, quartile 4.

On the basis of sensitivity and specificity data, the ROC curve analyses yielded an optimal cutoff glucose level of 86 mg/dL for both prediabetes and diabetes. In terms of predictive value, the C statistics or the area under the ROC curve at or above 50th percentile of FPG vs the rest were 0.855 (95% confidence interval [CI], 0.730-0.978) and 0.789 (95% CI, 0.666-0.915) in prediabetic and diabetic models, respectively. Thus, the level of FPG observed in childhood for predicting both prediabetes and diabetes in adulthood supported the median value of 86 mg/dL as a reasonable threshold.

The sensitivity and specificity of this cutoff value for adult prediabetic and diabetic groups were 76.9% (95% CI, 60.7-88.9) and 85.2% (95% CI, 83.2-87.1) and 75.0% (95% CI, 57.8-87.9) and 76.0% (95% CI, 74.5-78.5), respectively. Table 2 shows the results of a multivariable adjusted longitudinal logistic regression model that included BMI, mean arterial pressure, HDL cholesterol, LDL cholesterol, triglycerides, and HOMA-IR for diabetes. Alternate multivariate analyses using subscapular skin fold instead of BMI gave essentially identical results (data not shown).
Diabetes vs Normoglycemia

cially in a large population study.7,24
oral glucose tolerance test in a routine manner, espe-
diabetes because it is not practical to implement a 75-g
ommends using fasting glucose tests for the diagnosis of
vorable application to clinical practice.23 The ADA rec-
posed that FPG level is a strong and consistent predictor
of diabetes risk.8-10,21,22 The FPG level has been proven
cose testing remains unclear. Recent studies have indi-
tus is best determined by fasting or postchallenge glu-
young adulthood.
portend a diabetic condition (prediabetes or diabetes) in
the currently accepted reference range in childhood may

The data linked the conditions of prediabetes and type 2
diabetes mellitus in young adults to childhood FPG at
baseline and concurrent longitudinal changes in other
cardiometabolic risk variables from childhood to young
adulthood. The results show a significantly increased risk
(>2-fold) for developing adult prediabetes and type 2
diabetes in children in the 86 to 99 mg/dL FPG group
compared with those in the less than 86 mg/dL group, even
after controlling for other traditional cardiometabolic risk
factors. This observation suggests that elevated FPG within
the currently accepted reference range in childhood may
portend a diabetic condition (prediabetes or diabetes) in
young adulthood.

Whether the risk of developing type 2 diabetes mellit-
us is best determined by fasting or postchallenge glu-
cose testing remains unclear. Recent studies have indi-
cated that FPG level is a strong and consistent predictor
of diabetes risk.8-10,21,22 The FPG level has been proven
to have high reproducibility, small variability, and a fa-
vorable application to clinical practice.23 The ADA rec-
ommends using fasting glucose tests for the diagnosis of
diabetes because it is not practical to implement a 75-g
oral glucose tolerance test in a routine manner, espe-
cially in a large population study.24

The definition of the reference range of fasting plasma
glucose level was recently revised by the ADA to be less
than 100 mg/dL.6,7 instead of less than 110 mg/dL. This
cutoff value is applied without distinction of age group,
even in youth.24 The increase in sequential changes in
FPG level, even within the reference range, was corre-
lated with the higher risk of developing diabetes.9 Fur-
ther, previous findings have shown that a fasting plasma
glucose level of more than 94 mg/dL elevates the risk of
diabetes.25 Other articles have even suggested a lower
threshold.8,10,21 In the current study, a fasting plasma glu-
cose level of 86 to 99 mg/dL vs less than 86 mg/dL ob-
erved in childhood significantly increased (>2-fold) the
risk of developing prediabetes and diabetes in adult-
hood, regardless of other traditional cardiometabolic risk
factors; this is consistent with earlier studies in child-
hood21 and young adulthood.8

The observed FPG cutoff level for predicting type 2 dia-
betes mellitus in the study cohort, although within the ref-
ence range, was slightly lower than found previously (87
mg/dL in healthy young men from the Metabolic, Life-
style, and Nutrition Assessment in Young Adults
[MELANY] cohort study6 and 90 mg/dL in older age in
the Kaiser Permanente Northwest retrospective cohort study10). This difference can be explained by the lower av-
age age at baseline of our cohort. Indeed, a progressively
creasing FPG13 and glycosylated hemoglobin13 level with age in nondiabetic subjects has been noted earlier.

It has been reported that inclusion of obesity status
and triglyceride levels enhances the predictability of a high
reference FPG level with respect to type 2 diabetes mellit-
us.8 The present study supports this and an earlier ob-
servation that a high reference FPG level, as well as in-

Table 2. Multivariate Prediction of Adult Diabetes Status by Baseline Childhood FPG Levels and Other Cardiometabolic Risk Variables Since Childhood

<table>
<thead>
<tr>
<th>Independent Variable</th>
<th>Prediabetes vs Normoglycemia</th>
<th>Diabetes vs Normoglycemia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR (95% CI)</td>
<td>P Value</td>
</tr>
<tr>
<td>Model 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Childhood FPG level</td>
<td></td>
<td></td>
</tr>
<tr>
<td><50th percentile</td>
<td>1 [Reference]</td>
<td><.001</td>
</tr>
<tr>
<td>≥50th percentile</td>
<td>3.53 (2.01-6.18)</td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>1.04 (1.01-1.07)</td>
<td>.009</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>1.17 (1.03-1.33)</td>
<td>.01</td>
</tr>
<tr>
<td>Childhood FPG level</td>
<td></td>
<td></td>
</tr>
<tr>
<td><50th percentile</td>
<td>1 [Reference]</td>
<td><.001</td>
</tr>
<tr>
<td>≥50th percentile</td>
<td>3.50 (2.00-6.13)</td>
<td></td>
</tr>
<tr>
<td>Model 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>LDL cholesterol</td>
<td>1.40 (1.12-1.74)</td>
<td>.003</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>1.23 (1.13-1.35)</td>
<td><.001</td>
</tr>
<tr>
<td>Childhood FPG level</td>
<td></td>
<td></td>
</tr>
<tr>
<td><50th percentile</td>
<td>1 [Reference]</td>
<td><.001</td>
</tr>
<tr>
<td>≥50th percentile</td>
<td>3.40 (1.87-6.18)</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: BMI, body mass index (calculated as weight in kilograms divided by height in meters squared); CI, confidence interval; ellipses, did not retain in the model; FPG, fasting plasma glucose; HOMA-IR, homeostasis model assessment of insulin resistance; LDL, low-density lipoprotein; OR, odds ratio.

a Model 1 indicates FPG level (<50th percentile vs ≥50th percentile) in childhood at baseline; model 2, model 1 + BMI and triglycerides since childhood, as continuous variables; model 3, model 2 + mean arterial pressure, high-density lipoprotein cholesterol, LDL cholesterol, and HOMA-IR since childhood, as continuous variables.

b Longitudinal logistic regression model with generalized equation estimation method, adjusted for age, age squared, race, and sex, and the race × sex interaction, as applicable.
to adult diabetes. Further, obesity and insulin resistance are well-known interrelated risk factors for type 2 diabetes.

As a limitation, this study lacks data on postchallenge glucose, in vivo insulin action and secretion, and glycosylated hemoglobin in childhood to determine the status of glucose homeostasis. Instead, an established simple surrogate measure of insulin resistance (HOMAIR) applicable to population studies was used. Further, information on adipokine release as well as plasma insulin concentrations in man.

In summary, these findings indicate that excess FPG observed in childhood, albeit within the currently accepted reference range, may predict diabetic status (prediabetes and type 2 diabetes mellitus) in young adulthood, independent of other traditional cardiometabolic risk factors. Additional population-based studies are needed to develop consensus regarding FPG cutoff values to define the risk of type 2 diabetes mellitus in this age group.

Accepted for Publication: August 10, 2009.

Correspondence: Gerald S. Berenson, MD, Tulane Center for Cardiovascular Health, Tulane University Health Sciences Center, 1440 Canal St, Ste 1829, New Orleans, LA 70112 (berenson@tulane.edu).

Author Contributions: Study concept and design: Nguyen, Srinivasan, Chen, and Berenson. Acquisition of data: Nguyen, Srinivasan, Xu, and Berenson. Analysis and interpretation of data: Nguyen and Srinivasan. Drafting of the manuscript: Nguyen. Critical revision of the manuscript for important intellectual content: Nguyen, Srinivasan, Chen, and Berenson. Statistical analysis: Nguyen. Obtained funding: Srinivasan, Xu, Chen, and Berenson. Administrative, technical, and material support: Srinivasan, Xu, Chen, and Berenson. Study supervision: Srinivasan and Berenson.

Financial Disclosure: None reported.

Funding/Support: This study was supported by grants AG16592 from the National Institute on Aging; and 085508E from the American Heart Association.

Additional Contributions: The Bogalusa Heart Study is a joint effort of many investigators and staff members whose contributions are gratefully acknowledged. We especially thank the study participants.

REFERENCES

