Objective: To explore whether different forms of violence against women were associated with increased incidence rates of diarrhea and respiratory tract infections among infants.

Design: A 12-month follow-up study embedded in a food and micronutrient supplementation trial.

Setting: Rural Bangladesh.

Participants: Pregnant women and their 3132 live-born children.

Main Exposure: Maternal exposure to physical, sexual, and emotional violence and level of controlling behavior in the family.

Main Outcome Measures: Infants’ risk of falling ill with diarrheal diseases and respiratory tract infections in relation to mothers’ exposure to different forms of violence. Adjusted for household economic conditions, mother’s education level, parity, and religion.

Results: Fifty percent of the women reported lifetime experience of family violence. Infants of mothers exposed to different forms of family violence had 26% to 37% higher incidence of diarrhea. Any lifetime family violence was positively associated with increased incidence of diarrheal diseases (adjusted rate ratio, 1.20; 95% confidence interval, 1.10-1.30) and lower respiratory tract infections (adjusted rate ratio, 1.31; 95% confidence interval, 1.17-1.46). Further, all forms of family violence were also independently positively associated with infant illness, and the highest incidence rates were found among the daughters of severely physically abused mothers.

Conclusion: Family violence against women was positively associated with an increased risk of falling ill with diarrheal and respiratory tract infections during infancy. The present findings add to increasing evidence of the magnitude of public health consequences of violence against women.

Arch Pediatr Adolesc Med. 2009;163(10):931-936

Violence Against Women causes serious long-term physical and mental health consequences in exposed women. Physical and sexual violence against reproductive-aged women is associated with low-birthweight offspring and other perinatal complications. Fatal consequences of violence against mothers on children’s health have also been found; data from 2 Indian studies indicate an association between physical violence against women and increased neonatal or infant mortality. In a case-referent study in Nicaragua, we showed that lifetime physical and sexual violence against women was associated with a 6 times—higher risk of deaths of children younger than 5 years. Further, in a group of educated mothers in rural Bangladesh, exposure to high levels of controlling behavior in marriage or severe physical violence doubled the mortality rates of daughters younger than 5 years.

The literature on consequences of violence against women on young children’s morbidity pattern is limited, and weaknesses in study designs and methods preclude causal interpretations. However, there is evidence that violence against women is associated with a risk of lower frequency of immunization of children. Moreover, in a study of 4000 US women, (mostly unmarried) self-perceived impairment of infant health was more commonly reported among mothers exposed to physical partner violence. The only study from a low-income setting to address morbidity among children of abused women is a cross-sectional survey (n = 437 mother-infant pairs) in Uganda that reported that lifetime intimate physical and sexual partner violence was associated with overall infant illness and diarrhea.
Violence exposure may interfere with women’s caregiving behavior through several pathways, all of which may lead to consequences of infant health. Diminished autonomy, social isolation, and lack of control over financial resources, well-described consequences of an abusive relationship, may impair child care as well as lead to insufficient health care seeking. Furthermore, long-lasting mental health consequences for abused women such as stress and depression might cause disturbances in the emotional interaction between mother and infant and reduced the possibility of mothers meeting the demands of the every-day physical childcare.

In South Asia, gender inequality is prominent and partner violence is commonly reported; in a World Health Organization (WHO)—coordinated study of 1500 rural Bangladeshi women who had ever been married, 69% reported lifetime experience of intimate partner violence. The infant mortality rate in Bangladesh has been reduced during the last decades but is still 50 to 60 of 1000 live births, 10 times the level in high-income countries.

Discrimination of female infants was previously pronounced in South Asia and, in some areas, still is. This was manifested in higher frequency of malnutrition of girls and excess female child mortality, explained by differences in rearing and health care-seeking practices for girls and boys. Diarrheal diseases and respiratory tract infections are major causes of infant death in the region and contribute to a large extent to overall morbidity among small children.

This study site is a rural area in the Bangladesh delta region where a well-established health and demographic surveillance system enables pregnancy identification and longitudinal follow-up. Data emanate from a prenatal food and micronutrient supplementation trial, the Maternal and Infant Nutrition Interventions in Matlab (MINIMat) trial (L. A. Persson, oral communication, 2008), in which all pregnant women in the study area were invited to participate (n=4436). This analysis includes a 12-month follow-up of the live-born children of participating women. Enrollment of women took place from November 2001 to October 2003, and the children were subsequently born from April 2002 to June 2004.

DATA COLLECTION

At enrollment, information was collected on women’s age, parity, marital status, educational level (≥7, 3–6, or <3 years of schooling), occupation, and religion. Participants’ pregnancies were confirmed with an ultrasound (preferably at a clinic visit at 8–10 weeks’ gestational age), and pregnant women were randomly assigned to different food and micronutrient interventions and to either counseling for exclusive breastfeeding or a usual health care message (L. A. Persson, oral communication, 2008). Household economic status was estimated by constructing a wealth index (asset score) using principal component analysis.

METHODS

The study site is a rural area in the Bangladesh delta region where a well-established health and demographic surveillance system enables pregnancy identification and longitudinal follow-up. Data emanate from a prenatal food and micronutrient supplementation trial, the Maternal and Infant Nutrition Interventions in Matlab (MINIMat) trial (L. A. Persson, oral communication, 2008), in which all pregnant women in the study area were invited to participate (n=4436). This analysis includes a 12-month follow-up of the live-born children of participating women. Enrollment of women took place from November 2001 to October 2003, and the children were subsequently born from April 2002 to June 2004.

Table 1. Experience of Violence by the 3132 Rural Bangladeshi Mothers

<table>
<thead>
<tr>
<th>Type of Violence</th>
<th>Mothers, % (n=3132)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any violence</td>
<td>50</td>
</tr>
<tr>
<td>Lifetime physical violence</td>
<td>22</td>
</tr>
<tr>
<td>Lifetime sexual violence</td>
<td>24</td>
</tr>
<tr>
<td>Lifetime moderate physical violence</td>
<td>14</td>
</tr>
<tr>
<td>Lifetime severe physical violence</td>
<td>8</td>
</tr>
<tr>
<td>Physical violence during the pregnancy</td>
<td>8</td>
</tr>
<tr>
<td>Lifetime emotional violence</td>
<td>28</td>
</tr>
<tr>
<td>Controlling behavior (>one-fifth of items)</td>
<td>37</td>
</tr>
<tr>
<td>High level of controlling behavior</td>
<td>18</td>
</tr>
</tbody>
</table>

*physical, sexual, emotional, or controlling behavior ever.

Includes slaps, throwing things, pushing, or shoving.

Includes hitting, kicking, dragging, beating, choking, burning, threatening to use or use of a weapon.

Includes insults, humiliations, threats.

Restricted in 2 or more of the 5 items checked (including restrictions in daily contacts and extreme jealousy).
A diarrheal disease episode was defined as 3 or more liquid stools per 24 hours. Acute respiratory infection was defined as cough with fever and acute lower respiratory tract infection (pneumonia) as cough or breathing problem with rapid breathing and fever.

STUDY SAMPLE AND EXCLUSIONS

Of 3558 registered singleton live births, 158 were excluded from the follow-up owing to incomplete or missing data at birth (including early neonatal deaths), incomplete data on maternal violence exposure, or severe medical conditions. A further 233 children were lost to follow-up because of out-migration or being absent from home during 3 subsequent home visits, 32 infants we...
Table 2. Incidence of Symptoms Related to Sex and Mother’s Experience of Different Forms of Family Violencea

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Diarrhea, All Children (N=3132)</th>
<th>Pneumonia, All Children (N=3132)</th>
<th>Girls (n=1523)</th>
<th>Boys (n=1609)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any violence</td>
<td>1.20 (1.10-1.30)</td>
<td>1.31 (1.17-1.46)</td>
<td>1.43 (1.19-1.69)</td>
<td>1.22 (1.06-1.41)</td>
</tr>
<tr>
<td>Lifetime physical violence</td>
<td>1.21 (1.09-1.35)</td>
<td>1.31 (1.15-1.50)</td>
<td>1.37 (1.11-1.69)</td>
<td>1.26 (1.05-1.51)</td>
</tr>
<tr>
<td>Lifetime severe physical violence</td>
<td>1.28 (1.10-1.48)</td>
<td>1.51 (1.26-1.80)</td>
<td>1.71 (1.31-2.25)</td>
<td>1.36 (1.07-1.72)</td>
</tr>
<tr>
<td>Physical violence during actual pregnancy</td>
<td>1.24 (1.08-1.42)</td>
<td>1.25 (1.05-1.49)</td>
<td>1.51 (1.17-1.95)</td>
<td>1.06 (0.80-1.35)</td>
</tr>
<tr>
<td>Lifetime sexual violence</td>
<td>1.21 (1.10-1.33)</td>
<td>1.39 (1.23-1.57)</td>
<td>1.47 (1.22-1.78)</td>
<td>1.33 (1.14-1.57)</td>
</tr>
<tr>
<td>Lifetime emotional violence</td>
<td>1.25 (1.14-1.38)</td>
<td>1.39 (1.23-1.58)</td>
<td>1.62 (1.34-1.97)</td>
<td>1.25 (1.05-1.48)</td>
</tr>
<tr>
<td>High level of control (≥2/5 items)</td>
<td>1.24 (1.12-1.38)</td>
<td>1.37 (1.19-1.57)</td>
<td>1.59 (1.29-1.97)</td>
<td>1.21 (1.00-1.47)</td>
</tr>
</tbody>
</table>

a Per person-days in 3132 rural Bangladeshi infants aged 1 to 12 months.
b Three or more loose stools per 24 hours.
c Cough and fever.
d Cough and/or breathing difficulties, rapid breathing, and fever.

Table 3. Adjusted Rate Ratios for Episodes of Diarrheal Diseases and Lower Respiratory Tract Infections Among Infants Based on Maternal Exposure to Different Forms of Family Violencea

<table>
<thead>
<tr>
<th>Mothers’ Exposure to Violenceb</th>
<th>Rate Ratio (95% Confidence Interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diarrhea, All Children (N=3132)</td>
</tr>
<tr>
<td>Any violence</td>
<td>1.20 (1.10-1.30)</td>
</tr>
<tr>
<td>Lifetime physical violence</td>
<td>1.21 (1.09-1.35)</td>
</tr>
<tr>
<td>Lifetime severe physical violence</td>
<td>1.28 (1.10-1.48)</td>
</tr>
<tr>
<td>Physical violence during actual pregnancy</td>
<td>1.24 (1.08-1.42)</td>
</tr>
<tr>
<td>Lifetime sexual violence</td>
<td>1.21 (1.10-1.33)</td>
</tr>
<tr>
<td>Lifetime emotional violence</td>
<td>1.25 (1.14-1.38)</td>
</tr>
<tr>
<td>High level of control (≥2/5 items)</td>
<td>1.24 (1.12-1.38)</td>
</tr>
</tbody>
</table>

a A total of 3132 rural Bangladeshi infants were followed up from 1 to 12 months of age. Lower respiratory tract infections included cough and/or difficult breathing, rapid breathing, and fever.
b Compared with children of mothers with no experience of partner violence at all, adjusted for asset score (high or low), mothers’ educational level (≥7, 3-6, or <3 y of schooling), parity (first, 2-3, >3 live births), and religion (Muslim, Hindu). Duration of exclusive breastfeeding, birth weight, and maternal weight were not confounding factors.
c P≤.05 for all except this value.

Children of mothers exposed to different forms of family violence had 26% to 37% higher incidence (unadjusted) of diarrheal diseases and 16% to 83% higher incidence (unadjusted) of respiratory infection episodes per person-year than children of women who were not abused. The positive association between violence against women and incidence of lower respiratory tract infections tended to be more pronounced for daughters than sons and more marked in relation to more severe violence.

After adjusting for asset score, religion, maternal educational level, and birth order of infant, there was a positive association between mothers’ exposure to any form of violence and the risk of falling ill with diarrhea (rate ratio, 1.20; 95% confidence interval, 1.19-1.39) and respiratory tract infections (rate ratio, 1.31; 95% confidence interval, 1.17-1.46), assessed with the Poisson regression model (Table 3). Lifetime physical violence, lifetime severe physical violence, physical violence during the ongoing pregnancy, lifetime sexual violence, lifetime emotional violence, and high level of control in marriage were all independently and positively associated with incidence of disease symptoms. In addition, mothers’ exposure to family violence increased the proportion of observed days with diarrheal or respiratory symptoms.

Incidence rates for pneumonia were assessed among boys and girls (Table 3). When assessing diarrhea and overall acute respiratory infection symptoms, there were no or only small differences in rate ratios between sex (not shown). Further, stunted (length for age < −2 SD) as well as nonstunted (length for age ≥ −2 SD) infants of abused mothers presented very similar increases in risk of falling ill with diarrheal or respiratory tract infections compared with infants of women who were not abused.

COMMENT

Diarrhea and respiratory tract infections contribute more than any other illnesses to infant morbidity and mortality in the developing world. In this study we found that, after adjusting for potential confounding factors, family violence against women significantly increased the risk of infants having those diseases. Any form of family violence, independent of timing, as well as controlling behavior without physical assault, were risk factors, and se-
vere physical violence, a female child, and younger age of the child further increased the risk. Data from a cross-sectional study in Uganda has previously suggested an association between partner violence and diarrhea and overall infant illness. However, our study has methodological advantages: a community-based, prospective, longitudinal design with monthly morbidity recalls during the infants’ first year of life, generating more than 200,000 days of observation.

The incidence rates of diarrhea and respiratory tract infections in our study are consistent with former studies performed in the region; Pathela et al. reported an overall incidence of diarrhea of 4.25 per child-year in rural Bangladesh. In a review of respiratory tract infections among children in Asia, the incidence of overall respiratory tract infections was 6 to 9, and pneumonia 0.1 to 1.2, per person-year. Children up to 5 years of age were included, which could explain a slightly higher incidence rate in our study, as we included only infants. Short recall periods (in our study, 7 days) reduce the risk of recall bias and improve the quality of caregiver-reported morbidity data. The definition of diarrhea was simple; thus, mothers can reliably report diarrheal episodes. Caregiver-reported respiratory symptoms are known to be less specific than caregiver-reported diarrheal episodes. However, fast breathing and fever, the symptoms interpreted as pneumonia in our study, were considered to provide the highest positive predictive value for pneumonia in self-reporting.

Underreporting of exposure to violence is possible, as the results showed a lower proportion of women reporting experience of partner violence than in the WHO-coordinated study previously performed in the area. Interviewers collected information on experiences of violence in private after receiving careful training. However, the protocol included several other time-consuming study procedures, which may result in some underreporting of experiences of violence. If underreporting of violence exposure (ie, nondifferential misclassification) is the case in this study, our results could underestimate the significance of violence as a risk factor for infant morbidity.

The increased risk of infant morbidity related to mothers’ exposure to family violence could partly be explained by an increase in risk of low birth weight and undernutrition during infancy, a well-described risk factor for infant morbidity. Several studies have described associations between violence against women and low birth weight of the offspring. Hasselman and Reichenheim showed an association between partner violence and acute malnutrition among small children in Brazil. We have previously shown that violence against women increased the risk of smaller size at birth, growth stunting, and underweight during the first 2 years of life in the same study population. In the present data, low birth weight was not significantly related to increased incidence rates of diarrhea or respiratory tract infections, even though there was a numerical tendency in that direction. Further, undernutrition during infancy could not be the only association between violence and infant morbidity, as stratification for nutritional status revealed almost the same increase in morbidity risks for the stunted and underweight as for the well-nourished infants of abused mothers.

The duration and exclusiveness of breastfeeding may explain differences in morbidity among infants. In this study the duration of exclusive breastfeeding did not differ in relation to mothers’ violence exposure, except in a small group of severely abused women who breastfed exclusively for longer than others. Other feeding and weaning practices were not assessed in the present study.

Perhaps most importantly, an association between family violence and infant morbidity could be explained by abused mothers being depressed, emotionally stressed, and socially isolated. This reduces a mother’s ability to cope with the everyday needs of a small child and diminishes the quality of care giving behavior, which is important in preventing infant morbidity. Further, caring for a sick child requires investment in time and dedication and the recovery from episodes of diarrheal or respiratory tract infections are dependent on the presence and ability of the primary caregiver, ie, the mother.

In addition, abused women are less likely to be able to seek external support when needed. We have no information on use of health services in this study, a limitation when trying to understand the relationship between violence against mothers and infant morbidity. Our data indicate a higher increase in risk of getting pneumonia among daughters than sons of abused mothers. This corresponds to earlier findings from the area where gender-biased consequences of partner violence for child mortality were found and might be explained by differences in child rearing and health care-seeking practices for girls and boys.

We conclude that family violence against women increases the risk of the most common and important diseases in infancy. This could, at least partly, explain our previously reported findings that violence may increase the risk of infant mortality. The present findings add to the increasing evidence of the magnitude of public health consequences of violence against women, and the findings might be especially relevant in settings with high level of infant morbidity and mortality.

Accepted for Publication: March 25, 2009.

Correspondence: Kajsa Åsling-Monemi, MD, International Maternal and Child Health, Department of Women’s and Children’s Health, Uppsala University, SE-751 85 Uppsala, Sweden (kajsa.asling@kbh.uu.se).

Financial Disclosure: None reported.

Funding/support: This study was supported by the United Nations Children’s Fund; Swedish International Development Cooperation Agency; United Kingdom Medical Research Council; Swedish Research Council; Department for International Development; the International Centre for Diarrhoeal Disease Research, Bangladesh;
REFERENCES

