0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Article | ONLINE FIRST

Long-term Outcome of Brain Structure in Premature Infants:  Effects of Liberal vs Restricted Red Blood Cell Transfusions FREE

Peg C. Nopoulos, MD; Amy L. Conrad, PhD; Edward F. Bell, MD; Ronald G. Strauss, MD; John A. Widness, MD; Vincent A. Magnotta, PhD; M. Bridget Zimmerman, PhD; Michael K. Georgieff, MD; Scott D. Lindgren, PhD; Lynn C. Richman, PhD
[+] Author Affiliations

Author Affiliations: Departments of Psychiatry (Drs Nopoulos and Conrad), Pediatrics (Drs Nopoulos, Bell, Strauss, Widness, Lindgren, and Richman), Neurology (Dr Nopoulos), Pathology (Dr Strauss), and Radiology (Dr Magnotta), Carver College of Medicine, and Department of Biostatistics, College of Public Health (Dr Zimmerman), University of Iowa, Iowa City; and Departments of Pediatrics and Child Psychology, University of Minnesota, Minneapolis (Dr Georgieff).


Arch Pediatr Adolesc Med. 2011;165(5):443-450. doi:10.1001/archpediatrics.2010.269.
Text Size: A A A
Published online

Advances in prenatal medicine and neonatal intensive care have resulted in improved survival for preterm infants, in particular for those infants with extremely low birth weight (<1000 g) and those born at the limits of viability (22-25 weeks' gestation). Despite improvements in survival, the incidence of disability in this population has not diminished accordingly.1 A major morbidity for this patient group is neurodevelopmental and behavioral abnormalities.28

Understanding the risk factors for abnormal neurodevelopmental outcomes is critical for implementing intervention strategies to improve the outcomes of premature infants. Some of the key risk factors for adverse outcome are biologic factors that are not modifiable following preterm birth: gestational age, birth weight, male sex, and multiple birth.9 However, there are factors with potential impact on developmental outcome that can be targeted for improvement. One important factor is management of the anemia of prematurity, particularly, optimal red blood cell (RBC) transfusion practices. Transfusion of packed red blood cells is a major component of neonatal care of the preterm infant. As many as 95% of extremely low-birth-weight infants will receive at least 1 RBC transfusion, as will up to 80% of preterm infants with birth weights less than 1500 g (very low birth weight), during the first few weeks of life.1012 Red blood cell transfusions can be prescribed according to liberal or restricted guidelines (ie, with relatively high or low pretransfusion hematocrit values, respectively) with the possibility of undertransfusion or overtransfusion, either of which may have adverse effects.13

Investigation of differential transfusion practices as a potential mechanism of critical importance in neurodevelopmental outcome is an innovative area of research in which important findings are just beginning to emerge. To date, there have been 3 randomized clinical trials that have evaluated the neurodevelopmental impact in preterm infants of differential transfusion practices through a randomized clinical trial. The first study, the Iowa study, randomly allocated preterm infants to a “liberal” or “restrictive” program for RBC transfusion.14 A short-term outcome measure (ultrasonography obtained after study enrollment, during hospitalization) suggested that severe grades of intraventricular hemorrhage and periventricular leukomalacia were confined to the restricted group. A similar randomized multinational trial, the Premature Infants in Need of Transfusion (PINT) trial, found no differences in primary or secondary outcome measures between premature infants randomized to liberal and restricted RBC transfusion guidelines.15 However, when the PINT infants were evaluated for developmental outcomes at 18 to 21 months, cognitive delay was more prevalent in the restricted group.16 Finally, a recent study from Taiwan indicated no differences in clinical outcomes between preterm babies administered either restrictive or liberal transfusions.17 Although the recent study was negative, the Iowa and PINT studies suggest that liberal RBC transfusions may be neuroprotective (or that restricted RBC transfusions may be harmful).

In regard to outcomes of preterm birth, one consistent finding is that boys tend to fare more poorly in regard to both short- and long-term outcomes. Studies indicate that boys compared with girls have poorer survival, greater incidence of cerebral palsy, and lower measures of mental ability early in life.18,19

The current study reports a long-term outcome of brain structure (using magnetic resonance imaging) of the infants from the original Iowa study. Based on the published findings from the Iowa study14 and the PINT study,16 our hypothesis was that brain structure and function would be most abnormal in the restricted RBC transfusion group and that boys would fare worse than girls. Quantitative measures of brain structure were compared across 3 groups: (1) subjects from the original restricted transfusion group, (2) subjects from the original liberal transfusion group, and (3) age-equivalent healthy controls born full-term.

PARTICIPANTS

This study was approved by the University of Iowa institutional review board. Participants were recruited from the 100 infants who participated in the Iowa transfusion trial. Details regarding the inclusion and exclusion criteria for this study have been previously reported.14 This follow-up study began in 2005, 13 years after the initial study began. From the original sample of 100 preterm infants, a total of 55 subjects participated in the follow-up study and 45 preterm subjects did not. Reasons for not participating included the following: 3 were deceased, 17 declined to participate, and 25 were unable to be contacted despite multiple attempts. A death index search was conducted on those children who were lost to follow-up. These children did not match any death records through 2007.

To evaluate potential for bias in regard to neonatal characteristics in the participant group (n = 55) compared with the nonparticipant group (n = 45), independent-samples t tests were conducted. Measures included the Score for Neonatal Acute Physiology20 (SNAP), which was recorded on the day of birth and once daily through the first week of life; gestational age; birth weight; total number of days on a ventilator; and total number of apnea episodes. There were no differences between the 2 groups (Table 1). In addition, presence of intraventricular hemorrhage was compared across groups. A total of 19 of the 55 participants (34%) had an intraventricular hemorrhage compared with 11 of the 45 nonparticipants (24%). A χ2 test was nonsignificant (P = .27).

Table Graphic Jump LocationTable 1. Neonatal and Demographic Characteristics of Participants and Nonparticipants

Of the 55 participants, 44 completed the magnetic resonance imaging. Of the remaining 11 subjects with no useable scan, 4 had their scans cancelled (2 subjects from the restricted group and 2 from the liberal group) because of contraindication (metal vessel clamp placed for patent ductus arteriosus) and 7 did not complete their scans because they were too impaired cognitively or behaviorally to stay in the scanner (2 from the restricted group and 5 from the liberal group). Important characteristics of the neonatal hospitalization and demographic information are listed in Table 2 for the 44 preterm subjects who had a high-quality magnetic resonance imaging scan.

Healthy control children were recruited via advertisements from the surrounding communities. Exclusion criteria from the parent interview included any significant medical or psychiatric disorders or history of traumatic brain injury.

MEASURES

The SNAP was recorded on the day of birth and once daily through the first week of life. The transfusion threshold levels for each treatment group consisted of 3 steps in hematocrit level, which became lower as the subjects advanced through 3 phases of progressively better clinical condition based on their respiratory status.14 Hematocrit levels were obtained each morning in phase 1, 3 times per week in phase 2, and 2 times per week in phase 3. A measure of average hematocrit level was calculated for each infant, reflecting the mean hematocrit level over the course of his or her inpatient stay.

Because neurodevelopmental outcomes have been associated with infection,21,22 we also documented the number of times each subject underwent evaluation for sepsis and the total number of days they took antibiotics as a means of quantifying infection burden.

PROCEDURE

All magnetic resonance imaging data were acquired on a 3-T Siemens Trio scanner (Siemens, Malvern, Pennsylvania). The protocol acquired a 3-dimensional T1-weighted magnetization-prepared rapid-acquisition gradient-echo sequence in the coronal plane with 1-mm slice thickness. A turbo spin-echo T2-weighted sequence was obtained in the coronal plane with 1-mm slice thickness. Scans were processed through an automated procedure implemented in BRAINS.23 A discriminant tissue classification was then performed24 and a brain mask was created using an artificial neural network.25 Measures of gray matter, white matter, and cerebrospinal fluid (CSF) volumes were then completed using the standard Talairach method.26 Brain measures included intracranial volume (ICV), total brain tissue, cerebellum tissue volume, and total CSF. The cerebrum measures were further broken down into the 4 cerebral lobes (frontal, parietal, temporal, and occipital) and the subcortical nuclei (caudate, thalamus, and putamen). Cerebral gray matter, further divided into surface gray matter (reflecting the volume of the cortex), was divided into lobes, and cerebral white matter, further divided into the 4 cerebral lobes.

STATISTICAL ANALYSIS

All analyses were performed by using the SAS language with SAS STAT procedures (SAS Institute Inc, Cary, North Carolina). All general brain measures were analyzed using the general linear models procedure. The analysis for ICV was adjusted for height, sex, and age. Analysis for the remaining brain regions was done on measures adjusted for ICV (by using a brain measure:ICV ratio), age, and sex. This is important given the significant difference in sex distribution across groups and the major difference in brain structure between boys and girls.27 Small structures (caudate, putamen, thalamus) are listed and labeled as ICV percentages to avoid excessive leading zeros. All possible interaction terms were entered into the model but dropped if not significant. If the overall effect of group was significant, post hoc t tests were evaluated to determine the differences between the 3 groups. A 2-tailed α level of .05 was used for significance tests.

Because of the low number of girls in the restricted group, we were unable to evaluate a sex × group interaction. Therefore, sex effects were evaluated only in the liberal group compared with controls. For this analysis, a more liberal P value of <.10 was used to decide whether the interaction term of sex × group should be included in the model, because it is well known that statistical power to detect interactions is lower than for main effects.

DEMOGRAPHICS

Table 2 shows demographic data for the 3 groups. Age at study and parental social class were compared across the 3 groups using analysis of variance. There was no significant difference in age at study. Both preterm groups had significantly lower parental social class compared with the controls. Social class did not differ between the 2 preterm groups.

Other pertinent variables from the neonatal period were compared between the 2 preterm samples using analysis of variance. There was no significant difference between groups in gestational age, birth weight, SNAP, number of sepsis evaluations, or number of days taking antibiotics. Average hematocrit level and nadir hematocrit level (lowest hematocrit level recorded) were significantly lower for the restricted group compared with the liberal group, as expected based on transfusion protocols. Although the mean number of transfusions was greater for the liberal group, this difference did not reach statistical significance.

GROUP COMPARISONS

Table 3 shows the general and regional brain measures compared across the 3 groups. Raw means and standard deviations for the volume (in milliliters) of each brain region are listed.

Table Graphic Jump LocationTable 3. General and Regional Brain Measures Compared Across 3 Groups

There were 2 brain measures (ICV and putamen) in which 1 of the preterm groups was significantly different than controls and the other preterm group was not, yet both preterm groups were not different from each other. For ICV, the restricted transfusion group was not significantly lower than controls (t83 = 1.91; P = .06), but the liberal group showed a robust significance compared with controls (t83 = 4.39; P < .001), with the liberal subjects having lower volumes. However, the 2 preterm groups were not significantly different from each other (t83 = 1.74; P = .08). For the putamen, the mean volume for the restricted group was lower than controls (t83 = 2.36; P = .03), but the mean volume for the liberal group was not significantly lower than controls (t83 = 1.71; P = .09); the 2 preterm groups were not significantly different from each other (t83 = 0.832; P = .41). This pattern suggests that, descriptively, the volume decrement of ICV appears to be greater in the liberal group than in the restricted group, and the volume decrement of the putamen is greater in the restricted group than in the liberal group. These differences, however, did not reach statistical significance when compared across only the 2 preterm groups.

For several brain measures, there was no significant difference in volume between the 2 preterm groups, but both preterm groups were significantly different from the controls in total brain tissue, total CSF, cerebral white matter, caudate, and thalamus. The cerebral cortex and cerebellum were not different across the 3 groups.

Given the differences between the preterm group and controls in regard to parental social class, the analysis was repeated controlling for social class; the findings remained the same.

BREAKDOWN BY SEX

Because the restricted female group was too small to be analyzed independently (n = 2), this group was dropped from further analyses. Comparison of brain structure was then made between the liberal boys and the control boys and between the liberal girls and the control girls. Age at study did not differ among groups (Table 4). For parental social class, again the preterm groups were both significantly lower in social class than controls, but they were not different from each other. In terms of other pertinent variables from the time of birth, the liberal boys, compared with liberal girls, were significantly younger in gestational age. They also had higher SNAPs compared with the liberal girls, but this did not reach statistical significance. The liberal boys and liberal girls did not differ in birth weight, number of sepsis evaluations, or days taking antibiotics.

Table Graphic Jump LocationTable 4. Demographics of Sample Broken Down by Sexa
BRAIN MEASURES

Table 5 shows the analysis of all the general and regional brain measures across the liberal and control groups, separated by sex. Figure 1 displays these data visually. For the general measures of ICV, total brain tissue, and total CSF, there was no significant sex × group interaction. However, the decrement in ICV and total brain tissue and subsequent increase in CSF volume was descriptively more robust in the girls compared with boys.

Place holder to copy figure label and caption

Figure 1. The z scores of all brain measures. The 2 preterm groups (liberal girls in gray and liberal boys in black) were compared against their respective sex-matched control group. The control group represents the midline 0 on the y-axis, and therefore, negative scores on the y-axis indicate volumes that are lower than the controls and positive scores on the y-axis indicate volumes that are higher than the controls. *Measures that are significantly different than controls. CSF indicates cerebrospinal fluid, ICV, intracranial volume.

Graphic Jump Location
Table Graphic Jump LocationTable 5. General and Regional Brain Measures Compared Across the Liberal Preterm Group and Controls for Effects of Sexa

For several measures, there was a statistically significant sex × group interaction. These measures included cerebral cortex, cerebral white matter, and thalamus. To investigate regional measures, both cerebral cortex and cerebral white matter were further divided into the regions of the 4 cerebral lobes. Table 5 and Figure 2 show the regional breakdown of the cortical gray matter volumes across the sexes. The liberal girls had elevations in all 4 regions. This reached statistical significance for the frontal lobe. In contrast, the boys had increases in the frontal lobe but decrements in the remaining 3 lobes compared with controls. This difference reached statistically significant levels for the volume of the occipital gray matter in the liberal boys compared with the male controls. The sex × group interactions were significant for the parietal and occipital regions.

Place holder to copy figure label and caption
Figure 2.

The z scores of cortical gray matter regions. The 2 preterm groups (liberal girls in gray and liberal boys in black) were compared against their respective sex-matched control group. The control group represents the midline 0 on the y-axis, and therefore, negative scores on the y-axis indicate volumes that are lower than the controls and positive scores on the y-axis indicate volumes that are higher than the controls. *Measures that are significantly different than controls.

Graphic Jump Location

Table 5 and Figure 3 show the regional breakdown of the cerebral white matter volumes for each sex. The liberal girls had significant decrements in all 4 cerebral lobes, whereas the liberal boys had no significant difference in any region compared with their controls. Therefore, all 4 regions had a statistically significant group × sex interaction. A post hoc analysis of the cerebral lobe white matter volumes was run on only the liberal girls compared with the female controls to assess if there was a region × group interaction. The lobe × group interaction was significant (F = 4.04; P = .02), indicating that, although all white matter regions in the liberal girls were low, this finding was particularly robust in the temporal lobes.

Place holder to copy figure label and caption
Figure 3.

The z scores of white matter regions. The 2 preterm groups (liberal girls in gray and liberal boys in black) were compared against their respective sex-matched control group. The control group represents the midline 0 on the y-axis, and therefore, negative scores on the y-axis indicate volumes that are lower than the controls and positive scores on the y-axis indicate volumes that are higher than the controls. *Measures that are significantly different than controls.

Graphic Jump Location

In regard to the remaining regions of interest, there was no significant sex × group interaction for the cerebellum, caudate, or putamen. However, the thalamus was significantly lower in the female liberal group compared with the female controls; the male liberal group was not different compared with the male controls.

Finally, we sought to explore further the relationship between the abnormal brain findings in the liberal female group and measures of transfusion status. The initial analysis used a dichotomous group approach (restricted vs liberal). However, average hematocrit level is a continuous measure that also reflects transfusion status but can be applied to all girls (including the 2 in the restricted group who could not be analyzed separately as a group). Pearson partial correlations were calculated to assess the relationship between the brain measures and average hematocrit level, controlling for current age. To limit the number of tests and minimize the effect of type II error, only those measures that were distinctly abnormal in the female group were assessed: cerebral white matter and thalamus volume. Both cerebral white matter volume and thalamus volume were significantly inversely correlated with average hematocrit level (18 girls: white matter, r = −0.507; P = .04; thalamus, r = −0.478; P = .051). This indicates that the regional brain measures most affected in the girls are directly related to average hematocrit level: those children who had the highest average hematocrit level were the 12-year-olds with the lowest volumes of white matter and thalamus. This finding supports the notion that the abnormalities in the girls are indeed related to hematocrit level (transfusion status).

GENERAL GROUP EFFECTS

As a group, premature infants have structural brain abnormalities in almost every measure. These findings are in support of several other studies that have shown widespread abnormalities in long-term outcomes of preterm brain structure.4,2835 With respect to the comparisons between premature group effects, we found that, contrary to our original hypothesis, the restricted group did not show the greatest degree of abnormality. In general, there were no significant differences in brain structure between the 2 preterm groups, although descriptively measures tended to be lower in the liberal group than in the restricted group. This pattern is consistent with the results of our assessment of the long-term cognitive outcomes of the original Iowa sample (of which the current study is a subsample) (Thomasin McCoy, PhD, A.L.C., L.C.R., S.D.L., P.C.N., E.F.B., unpublished data, January 2010), which showed that the liberal preterm group performed below that of the restricted group on all cognitive tests that were administered. Most of these effects, as with the brain measures, did not show a significant difference between the 2 preterm groups, but the pattern of the liberal group having overall poorer cognitive outcome is congruent with the structural brain findings of the current subsample.

EFFECTS OF SEX

Despite the lack of differences in brain volumes between the preterm groups when analyzed as a whole, when the liberal group was analyzed by sex, many significant differences emerged. The results show that the liberal girls had the greatest degree of structural brain abnormality. The liberal girls had more robust abnormalities despite the fact that they were older in gestational age than the liberal boys, a well-documented protective factor for developmental outcomes.9

This analysis of sex effects was limited by our inability to assess restricted girls. Therefore, we are left with 2 possibilities: (1) the effects seen in the liberal female group are generalized effects to all premature girls compared with boys; or (2) the sex effect is specific to the girls in the liberal transfusion group. The first possibility is inconsistent with a large body of research supporting the notion that the male brain is more at risk for abnormal neurodevelopmental outcome.18 The findings from the correlation analysis support the second possibility, that the sex effect is specific to the girls in the liberal group. In that analysis, average hematocrit level was directly related to volume of white matter and thalamus. According to this correlation, female infants with the lowest average hematocrit level have the largest volumes of white matter and thalamus and, therefore, a better long-term outcome in terms of brain structure.

POTENTIAL DIFFERENCE BETWEEN SHORT- AND LONG-TERM OUTCOMES

The findings of the current long-term study suggest potential neuroprotective benefits of restrictive transfusion status, whereas the short-term outcome studies of this original sample14 and the PINT study16 suggested the opposite. One possible explanation for this conundrum is that short-term developmental or cognitive assessments, such as the Bayley Scales of Infant Development (as used in the PINT study), may be relatively poor prognosticators for long-term outcome. One study of 330 preterm infants showed that a subnormal Mental Developmental Index score from the Bayley Scales of Infant Development, at age-corrected age 20 months, was poorly predictive of cognitive function at age 8 years.36 The same appears to be true for neonatal brain imaging, with studies showing no relationship between neonatal brain ultrasonography abnormality and general cognitive ability at age 9 years37 or school performance at age 12 years.38

POTENTIAL ETIOLOGY

One possible etiology for our findings is that the restrictive group fared better because endogenous erythropoietin production was suppressed in the liberal transfusion group. Research studies over the past several years have documented in both animal and human studies that erythropoietin has substantial neuroprotective properties.3943 Analysis from the original Iowa study showed that erythropoietin levels obtained at 6 weeks into the protocol were significantly higher in the restricted group compared with the liberal group.14 Therefore, this suppression of erythropoietin may translate into “loss” of a growth factor known to promote brain growth and recovery from brain injury. Finally, the neuroprotective effect of erythropoietin has been shown to result from selective attenuation of cytokine production and inflammation,44,45 bringing together inflammation and erythropoietin suppression as 2 potential mechanisms with a common pathway.

In sum, the current study finds that the long-term outcome of brain structure in premature infants may be related to differential transfusion status or difference in mean hematocrit level. Although short-term outcomes suggest that restricted transfusion may bode a poor neurodevelopmental outcome (especially for boys), long-term outcomes may be adversely affected by liberal transfusion (especially for girls). Future studies should be geared toward replication and expansion of long-term outcome studies evaluating brain morphology in the context of anemia and its treatment in the neonatal period. In addition, studies evaluating the roles of inflammation and erythropoietin suppression in response to transfusion are needed.

Correspondence: Peg C. Nopoulos, MD, University of Iowa, 200 Hawkins Dr, W278 GH, Iowa City, IA 52242 (peggy-nopoulos@uiowa.edu).

Accepted for Publication: October 20, 2010.

Published Online: January 3, 2011. doi:10.1001/archpediatrics.2010.269

Author Contributions: Dr Nopoulos had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Nopoulos, Bell, Strauss, and Lindgren. Acquisition of data: Nopoulos, Conrad, Magnotta, and Lindgren. Analysis and interpretation of data: Nopoulos, Conrad, Bell, Strauss, Widness, Magnotta, Zimmerman, Georgieff, Lindgren, and Richman. Drafting of the manuscript: Nopoulos, Conrad, and Widness. Critical revision of the manuscript for important intellectual content: Nopoulos, Conrad, Bell, Strauss, Magnotta, Zimmerman, Georgieff, Lindgren, and Richman. Statistical analysis: Zimmerman and Richman. Obtained funding: Nopoulos, Bell, Strauss, Widness, Lindgren, and Richman. Administrative, technical, and material support: Conrad, Bell, Widness, Magnotta, and Lindgren.

Financial Disclosure: None reported.

Funding/Support: The current study was funded by grant 2 P01 HL04 6925 from the National Heart, Lung, and Blood Institute (Dr Widness, principal investigator).

Additional Information: The trial registration number for the original Iowa study at clinicaltrials.gov is NCT00369005.

Wilson-Costello  DFriedman  HMinich  NFanaroff  AAHack  M Improved survival rates with increased neurodevelopmental disability for extremely low birth weight infants in the 1990s. Pediatrics 2005;115 (4) 997- 1003
PubMed Link to Article
Salt  ARedshaw  M Neurodevelopmental follow-up after preterm birth: follow up after two years. Early Hum Dev 2006;82 (3) 185- 197
PubMed Link to Article
Saigal  SDoyle  LW An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet 2008;371 (9608) 261- 269
PubMed Link to Article
Myers  EMent  LR Long-term outcome of preterm infants and the role of neuroimaging. Clin Perinatol 2009;36 (4) 773- 789, vi
PubMed Link to Article
Larroque  BAncel  PYMarret  S  et al. EPIPAGE Study group, Neurodevelopmental disabilities and special care of 5-year-old children born before 33 weeks of gestation (the EPIPAGE study): a longitudinal cohort study. Lancet 2008;371 (9615) 813- 820
PubMed Link to Article
Anderson  PJDoyle  LW Cognitive and educational deficits in children born extremely preterm. Semin Perinatol 2008;32 (1) 51- 58
PubMed Link to Article
Anderson  PDoyle  LWVictorian Infant Collaborative Study Group, Neurobehavioral outcomes of school-age children born extremely low birth weight or very preterm in the 1990s. JAMA 2003;289 (24) 3264- 3272
PubMed Link to Article
Aarnoudse-Moens  CSWeisglas-Kuperus  Nvan Goudoever  JBOosterlaan  J Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics 2009;124 (2) 717- 728
PubMed Link to Article
Tyson  JEParikh  NALanger  JGreen  CHiggins  RDNational Institute of Child Health and Human Development Neonatal Research Network, Intensive care for extreme prematurity: moving beyond gestational age. N Engl J Med 2008;358 (16) 1672- 1681
PubMed Link to Article
Levy  GJStrauss  RGHume  H  et al.  National survey of neonatal transfusion practices, I: red blood cell therapy. Pediatrics 1993;91 (3) 523- 529
PubMed
Strauss  RG Red blood cell transfusion practices in the neonate. Clin Perinatol 1995;22 (3) 641- 655
PubMed
Fabres  JWehrli  GMarques  MB  et al.  Estimating blood needs for very-low-birth-weight infants. Transfusion 2006;46 (11) 1915- 1920
PubMed Link to Article
Strauss  RG Commentary: is it safe to limit allogeneic red blood cell transfusions to neonates? Neonatology 2008;93 (4) 217- 222
PubMed Link to Article
Bell  EFStrauss  RGWidness  JA  et al.  Randomized trial of liberal versus restrictive guidelines for red blood cell transfusion in preterm infants. Pediatrics 2005;115 (6) 1685- 1691
PubMed Link to Article
Kirpalani  HWhyte  RKAndersen  C  et al.  The Premature Infants in Need of Transfusion (PINT) study: a randomized, controlled trial of a restrictive (low) versus liberal (high) transfusion threshold for extremely low birth weight infants. J Pediatr 2006;149 (3) 301- 307
PubMed Link to Article
Whyte  RKKirpalani  HAsztalos  EV  et al. PINTOS Study Group, Neurodevelopmental outcome of extremely low birth weight infants randomly assigned to restrictive or liberal hemoglobin thresholds for blood transfusion. Pediatrics 2009;123 (1) 207- 213
PubMed Link to Article
Chen  HLTseng  HILu  CCYang  SNFan  HCYang  RC Effect of blood transfusions on the outcome of very low body weight preterm infants under two different transfusion criteria. Pediatr Neonatol 2009;50 (3) 110- 116
PubMed Link to Article
Hintz  SRKendrick  DEVohr  BRKenneth Poole  WHiggins  RDNichd Neonatal Research Network, Gender differences in neurodevelopmental outcomes among extremely preterm, extremely-low-birthweight infants. Acta Paediatr 2006;95 (10) 1239- 1248
PubMed Link to Article
Marlow  NWolke  DBracewell  MASamara  MEPICure Study Group, Neurologic and developmental disability at six years of age after extremely preterm birth. N Engl J Med 2005;352 (1) 9- 19
PubMed Link to Article
Richardson  DKGray  JE McCormick  MCWorkman  KGoldmann  DA Score for Neonatal Acute Physiology: a physiologic severity index for neonatal intensive care. Pediatrics 1993;91 (3) 617- 623
PubMed
Inder  TEWells  SJMogridge  NBSpencer  CVolpe  JJ Defining the nature of the cerebral abnormalities in the premature infant: a qualitative magnetic resonance imaging study. J Pediatr 2003;143 (2) 171- 179
PubMed Link to Article
Stoll  BJHansen  NIAdams-Chapman  I  et al. National Institute of Child Health and Human Development Neonatal Research Network, Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. JAMA 2004;292 (19) 2357- 2365
PubMed Link to Article
Magnotta  VAHarris  GAndreasen  NCO’Leary  DSYuh  WTHeckel  D Structural MR image processing using the BRAINS2 toolbox. Comput Med Imaging Graph 2002;26 (4) 251- 264
PubMed Link to Article
Harris  GAndreasen  NCCizadlo  T  et al.  Improving tissue classification in MRI: a three-dimensional multispectral discriminant analysis method with automated training class selection. J Comput Assist Tomogr 1999;23 (1) 144- 154
PubMed Link to Article
Powell  SMagnotta  VAJohnson  HJammalamadaka  VKPierson  RAndreasen  NC Registration and machine learning-based automated segmentation of subcortical and cerebellar brain structures. Neuroimage 2008;39 (1) 238- 247
PubMed Link to Article
Talairach  JTournoux  P Co-Planar Stereotaxic Atlas of the Human Brain.  New York, NY Thieme Medical Publishers1988;
Giedd  JNBlumenthal  JJeffries  NO  et al.  Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 1999;2 (10) 861- 863
PubMed Link to Article
Reiss  ALKesler  SRVohr  B  et al.  Sex differences in cerebral volumes of 8-year-olds born preterm. J Pediatr 2004;145 (2) 242- 249
PubMed Link to Article
Kesler  SRReiss  ALVohr  B  et al.  Brain volume reductions within multiple cognitive systems in male preterm children at age twelve. J Pediatr 2008;152 (4) 513- 520, 520, e1
PubMed Link to Article
Kesler  SRMent  LRVohr  B  et al.  Volumetric analysis of regional cerebral development in preterm children. Pediatr Neurol 2004;31 (5) 318- 325
PubMed Link to Article
Nagy  ZAshburner  JAndersson  J  et al.  Structural correlates of preterm birth in the adolescent brain. Pediatrics 2009;124 (5) e964- e972
PubMed Link to Article
Soria-Pastor  SPadilla  NZubiaurre-Elorza  L  et al.  Decreased regional brain volume and cognitive impairment in preterm children at low risk. Pediatrics 2009;124 (6) e1161- e1170
PubMed Link to Article
Allin  MHenderson  MSuckling  J  et al.  Effects of very low birthweight on brain structure in adulthood. Dev Med Child Neurol 2004;46 (1) 46- 53
PubMed Link to Article
Nosarti  CAl-Asady  MHFrangou  SStewart  ALRifkin  LMurray  RM Adolescents who were born very preterm have decreased brain volumes. Brain 2002;125 (pt 7) 1616- 1623
PubMed Link to Article
Peterson  BSVohr  BStaib  LH  et al.  Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. JAMA 2000;284 (15) 1939- 1947
PubMed Link to Article
Hack  MTaylor  HGDrotar  D  et al.  Poor predictive validity of the Bayley Scales of Infant Development for cognitive function of extremely low birth weight children at school age. Pediatrics 2005;116 (2) 333- 341
PubMed Link to Article
Pinto-Martin  JAWhitaker  AHFeldman  JFVan Rossem  RPaneth  N Relation of cranial ultrasound abnormalities in low-birthweight infants to motor or cognitive performance at ages 2, 6, and 9 years. Dev Med Child Neurol 1999;41 (12) 826- 833
PubMed Link to Article
Cooke  RWAbernethy  LJ Cranial magnetic resonance imaging and school performance in very low birth weight infants in adolescence. Arch Dis Child Fetal Neonatal Ed 1999;81 (2) F116- F121
PubMed Link to Article
Jelkmann  W Effects of erythropoietin on brain function. Curr Pharm Biotechnol 2005;6 (1) 65- 79
PubMed
Wang  LZhang  ZWang  YZhang  RChopp  M Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke 2004;35 (7) 1732- 1737
PubMed Link to Article
Wen  XHuang  YWang  J Erythropoietin preconditioning on hippocampus neuronal apoptosis following status epilepticus induced by Li-pilocarpine in rats through anti-caspase-3 expression. Neurol India 2006;54 (1) 58- 63, discussion 63
PubMed Link to Article
Bierer  RPeceny  MCHartenberger  CHOhls  RK Erythropoietin concentrations and neurodevelopmental outcome in preterm infants. Pediatrics 2006;118 (3) e635- e640
PubMed Link to Article
Zhu  CKang  WXu  F  et al.  Erythropoietin improved neurologic outcomes in newborns with hypoxic-ischemic encephalopathy. Pediatrics 2009;124 (2) e218- e226
PubMed Link to Article
Agnello  DBigini  PVilla  P  et al.  Erythropoietin exerts an anti-inflammatory effect on the CNS in a model of experimental autoimmune encephalomyelitis. Brain Res 2002;952 (1) 128- 134
PubMed Link to Article
Villa  PBigini  PMennini  T  et al.  Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J Exp Med 2003;198 (6) 971- 975
PubMed Link to Article

Figures

Place holder to copy figure label and caption

Figure 1. The z scores of all brain measures. The 2 preterm groups (liberal girls in gray and liberal boys in black) were compared against their respective sex-matched control group. The control group represents the midline 0 on the y-axis, and therefore, negative scores on the y-axis indicate volumes that are lower than the controls and positive scores on the y-axis indicate volumes that are higher than the controls. *Measures that are significantly different than controls. CSF indicates cerebrospinal fluid, ICV, intracranial volume.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 2.

The z scores of cortical gray matter regions. The 2 preterm groups (liberal girls in gray and liberal boys in black) were compared against their respective sex-matched control group. The control group represents the midline 0 on the y-axis, and therefore, negative scores on the y-axis indicate volumes that are lower than the controls and positive scores on the y-axis indicate volumes that are higher than the controls. *Measures that are significantly different than controls.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 3.

The z scores of white matter regions. The 2 preterm groups (liberal girls in gray and liberal boys in black) were compared against their respective sex-matched control group. The control group represents the midline 0 on the y-axis, and therefore, negative scores on the y-axis indicate volumes that are lower than the controls and positive scores on the y-axis indicate volumes that are higher than the controls. *Measures that are significantly different than controls.

Graphic Jump Location

Tables

Table Graphic Jump LocationTable 1. Neonatal and Demographic Characteristics of Participants and Nonparticipants
Table Graphic Jump LocationTable 3. General and Regional Brain Measures Compared Across 3 Groups
Table Graphic Jump LocationTable 4. Demographics of Sample Broken Down by Sexa
Table Graphic Jump LocationTable 5. General and Regional Brain Measures Compared Across the Liberal Preterm Group and Controls for Effects of Sexa

References

Wilson-Costello  DFriedman  HMinich  NFanaroff  AAHack  M Improved survival rates with increased neurodevelopmental disability for extremely low birth weight infants in the 1990s. Pediatrics 2005;115 (4) 997- 1003
PubMed Link to Article
Salt  ARedshaw  M Neurodevelopmental follow-up after preterm birth: follow up after two years. Early Hum Dev 2006;82 (3) 185- 197
PubMed Link to Article
Saigal  SDoyle  LW An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet 2008;371 (9608) 261- 269
PubMed Link to Article
Myers  EMent  LR Long-term outcome of preterm infants and the role of neuroimaging. Clin Perinatol 2009;36 (4) 773- 789, vi
PubMed Link to Article
Larroque  BAncel  PYMarret  S  et al. EPIPAGE Study group, Neurodevelopmental disabilities and special care of 5-year-old children born before 33 weeks of gestation (the EPIPAGE study): a longitudinal cohort study. Lancet 2008;371 (9615) 813- 820
PubMed Link to Article
Anderson  PJDoyle  LW Cognitive and educational deficits in children born extremely preterm. Semin Perinatol 2008;32 (1) 51- 58
PubMed Link to Article
Anderson  PDoyle  LWVictorian Infant Collaborative Study Group, Neurobehavioral outcomes of school-age children born extremely low birth weight or very preterm in the 1990s. JAMA 2003;289 (24) 3264- 3272
PubMed Link to Article
Aarnoudse-Moens  CSWeisglas-Kuperus  Nvan Goudoever  JBOosterlaan  J Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics 2009;124 (2) 717- 728
PubMed Link to Article
Tyson  JEParikh  NALanger  JGreen  CHiggins  RDNational Institute of Child Health and Human Development Neonatal Research Network, Intensive care for extreme prematurity: moving beyond gestational age. N Engl J Med 2008;358 (16) 1672- 1681
PubMed Link to Article
Levy  GJStrauss  RGHume  H  et al.  National survey of neonatal transfusion practices, I: red blood cell therapy. Pediatrics 1993;91 (3) 523- 529
PubMed
Strauss  RG Red blood cell transfusion practices in the neonate. Clin Perinatol 1995;22 (3) 641- 655
PubMed
Fabres  JWehrli  GMarques  MB  et al.  Estimating blood needs for very-low-birth-weight infants. Transfusion 2006;46 (11) 1915- 1920
PubMed Link to Article
Strauss  RG Commentary: is it safe to limit allogeneic red blood cell transfusions to neonates? Neonatology 2008;93 (4) 217- 222
PubMed Link to Article
Bell  EFStrauss  RGWidness  JA  et al.  Randomized trial of liberal versus restrictive guidelines for red blood cell transfusion in preterm infants. Pediatrics 2005;115 (6) 1685- 1691
PubMed Link to Article
Kirpalani  HWhyte  RKAndersen  C  et al.  The Premature Infants in Need of Transfusion (PINT) study: a randomized, controlled trial of a restrictive (low) versus liberal (high) transfusion threshold for extremely low birth weight infants. J Pediatr 2006;149 (3) 301- 307
PubMed Link to Article
Whyte  RKKirpalani  HAsztalos  EV  et al. PINTOS Study Group, Neurodevelopmental outcome of extremely low birth weight infants randomly assigned to restrictive or liberal hemoglobin thresholds for blood transfusion. Pediatrics 2009;123 (1) 207- 213
PubMed Link to Article
Chen  HLTseng  HILu  CCYang  SNFan  HCYang  RC Effect of blood transfusions on the outcome of very low body weight preterm infants under two different transfusion criteria. Pediatr Neonatol 2009;50 (3) 110- 116
PubMed Link to Article
Hintz  SRKendrick  DEVohr  BRKenneth Poole  WHiggins  RDNichd Neonatal Research Network, Gender differences in neurodevelopmental outcomes among extremely preterm, extremely-low-birthweight infants. Acta Paediatr 2006;95 (10) 1239- 1248
PubMed Link to Article
Marlow  NWolke  DBracewell  MASamara  MEPICure Study Group, Neurologic and developmental disability at six years of age after extremely preterm birth. N Engl J Med 2005;352 (1) 9- 19
PubMed Link to Article
Richardson  DKGray  JE McCormick  MCWorkman  KGoldmann  DA Score for Neonatal Acute Physiology: a physiologic severity index for neonatal intensive care. Pediatrics 1993;91 (3) 617- 623
PubMed
Inder  TEWells  SJMogridge  NBSpencer  CVolpe  JJ Defining the nature of the cerebral abnormalities in the premature infant: a qualitative magnetic resonance imaging study. J Pediatr 2003;143 (2) 171- 179
PubMed Link to Article
Stoll  BJHansen  NIAdams-Chapman  I  et al. National Institute of Child Health and Human Development Neonatal Research Network, Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. JAMA 2004;292 (19) 2357- 2365
PubMed Link to Article
Magnotta  VAHarris  GAndreasen  NCO’Leary  DSYuh  WTHeckel  D Structural MR image processing using the BRAINS2 toolbox. Comput Med Imaging Graph 2002;26 (4) 251- 264
PubMed Link to Article
Harris  GAndreasen  NCCizadlo  T  et al.  Improving tissue classification in MRI: a three-dimensional multispectral discriminant analysis method with automated training class selection. J Comput Assist Tomogr 1999;23 (1) 144- 154
PubMed Link to Article
Powell  SMagnotta  VAJohnson  HJammalamadaka  VKPierson  RAndreasen  NC Registration and machine learning-based automated segmentation of subcortical and cerebellar brain structures. Neuroimage 2008;39 (1) 238- 247
PubMed Link to Article
Talairach  JTournoux  P Co-Planar Stereotaxic Atlas of the Human Brain.  New York, NY Thieme Medical Publishers1988;
Giedd  JNBlumenthal  JJeffries  NO  et al.  Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 1999;2 (10) 861- 863
PubMed Link to Article
Reiss  ALKesler  SRVohr  B  et al.  Sex differences in cerebral volumes of 8-year-olds born preterm. J Pediatr 2004;145 (2) 242- 249
PubMed Link to Article
Kesler  SRReiss  ALVohr  B  et al.  Brain volume reductions within multiple cognitive systems in male preterm children at age twelve. J Pediatr 2008;152 (4) 513- 520, 520, e1
PubMed Link to Article
Kesler  SRMent  LRVohr  B  et al.  Volumetric analysis of regional cerebral development in preterm children. Pediatr Neurol 2004;31 (5) 318- 325
PubMed Link to Article
Nagy  ZAshburner  JAndersson  J  et al.  Structural correlates of preterm birth in the adolescent brain. Pediatrics 2009;124 (5) e964- e972
PubMed Link to Article
Soria-Pastor  SPadilla  NZubiaurre-Elorza  L  et al.  Decreased regional brain volume and cognitive impairment in preterm children at low risk. Pediatrics 2009;124 (6) e1161- e1170
PubMed Link to Article
Allin  MHenderson  MSuckling  J  et al.  Effects of very low birthweight on brain structure in adulthood. Dev Med Child Neurol 2004;46 (1) 46- 53
PubMed Link to Article
Nosarti  CAl-Asady  MHFrangou  SStewart  ALRifkin  LMurray  RM Adolescents who were born very preterm have decreased brain volumes. Brain 2002;125 (pt 7) 1616- 1623
PubMed Link to Article
Peterson  BSVohr  BStaib  LH  et al.  Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. JAMA 2000;284 (15) 1939- 1947
PubMed Link to Article
Hack  MTaylor  HGDrotar  D  et al.  Poor predictive validity of the Bayley Scales of Infant Development for cognitive function of extremely low birth weight children at school age. Pediatrics 2005;116 (2) 333- 341
PubMed Link to Article
Pinto-Martin  JAWhitaker  AHFeldman  JFVan Rossem  RPaneth  N Relation of cranial ultrasound abnormalities in low-birthweight infants to motor or cognitive performance at ages 2, 6, and 9 years. Dev Med Child Neurol 1999;41 (12) 826- 833
PubMed Link to Article
Cooke  RWAbernethy  LJ Cranial magnetic resonance imaging and school performance in very low birth weight infants in adolescence. Arch Dis Child Fetal Neonatal Ed 1999;81 (2) F116- F121
PubMed Link to Article
Jelkmann  W Effects of erythropoietin on brain function. Curr Pharm Biotechnol 2005;6 (1) 65- 79
PubMed
Wang  LZhang  ZWang  YZhang  RChopp  M Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke 2004;35 (7) 1732- 1737
PubMed Link to Article
Wen  XHuang  YWang  J Erythropoietin preconditioning on hippocampus neuronal apoptosis following status epilepticus induced by Li-pilocarpine in rats through anti-caspase-3 expression. Neurol India 2006;54 (1) 58- 63, discussion 63
PubMed Link to Article
Bierer  RPeceny  MCHartenberger  CHOhls  RK Erythropoietin concentrations and neurodevelopmental outcome in preterm infants. Pediatrics 2006;118 (3) e635- e640
PubMed Link to Article
Zhu  CKang  WXu  F  et al.  Erythropoietin improved neurologic outcomes in newborns with hypoxic-ischemic encephalopathy. Pediatrics 2009;124 (2) e218- e226
PubMed Link to Article
Agnello  DBigini  PVilla  P  et al.  Erythropoietin exerts an anti-inflammatory effect on the CNS in a model of experimental autoimmune encephalomyelitis. Brain Res 2002;952 (1) 128- 134
PubMed Link to Article
Villa  PBigini  PMennini  T  et al.  Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J Exp Med 2003;198 (6) 971- 975
PubMed Link to Article

Correspondence

CME
Also Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
Please click the checkbox indicating that you have read the full article in order to submit your answers.
Your answers have been saved for later.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
Submit a Comment
Limitations in measuring the effects of blood transfusion on long-term outcome in preterm infants.
Posted on February 8, 2011
Niloufar Ashtiani, MD
VU University Medical Center,
Conflict of Interest: None Declared
We acknowledge the importance of studies assessing long term follow- up of routine interventions in preterm infants. Nopoulos et al reported recently on the long term follow-up of liberal versus restricted red blood cell transfusions. The authors concluded that intracranial volume was substantially smaller in the liberal group compared with term controls, and that girls from the liberal group had significant more brain abnormalities. Although early interventions such as red blood cell transfusions may affect neurodevelopmental outcome, intracranial volume is not the best predictor of neurodevelopmental outcome, as it includes cerebrospinal fluid as well as total brain tissue.1 The authors also measured gray and white matter, but were not able to show differences between the liberal and restricted group. This is important since, differences in brain volume are related to changes in gray and white matter volume, rather than total brain volume in preterm compared to term infants.2 In a long term follow- up study of very low birth weight teenagers, white matter differences were related to perceptual, cognitive, mental health and motor impairments.3 Therefore, we have concerns regarding the conclusions of Nopoulos et al. Although the primary objective of this study was to compare long term outcome between infants in the liberal versus restricted group, these results (i.e. no differences in any of the brain volume measurements between both groups) are not reported in the conclusions. As may be foreseen, post hoc comparison with a term control group is hampered by methodological shortcomings. Furthermore, only 44% of the initial cohort was available for analysis, leading to important sex difference between the intervention (e.g. fewer females in the restricted group). Therefore, we believe that conclusions regarding the outcome of girls from any group are not possible. In our opinion, the conclusion of this study should be restricted to the results of the boys. Although the aim of this long term follow up study is important, the change of the study population over time hampers its conclusions.
References
1. Peterson BS, Vohr B, Staib LH, Cannistraci CJ, Dolberg A, Schneider KC, Katz KH, Westerveld M, Sparrow S, Anderson AW, Duncan CC, Makuch RW, Gore JC, Ment LR. Regional brain volume abnormalities and long- term cognitive outcome in preterm infants. JAMA 2000;18;284(15):1939-47
2. Ment LR, Kesler S, Vohr B, Katz KH, Baumgartner H, Schneider KC, Delancy S, Silbereis J, Duncan CC, Constable RT, Makuch RW, Reiss AL. Longitudinal brain volume changes in preterm and term control subjects during late childhood and adolescence. Pediatrics 2009;123;503-511
3. Skranes J, Vangberg TR, Kulseng S, Indredavik MS, Evensen KA, Martinussen M, Dale AM, Haraldseth O, Brubakk AM. Clinical findings and white matter abnormalities seen on diffusion tensor imaging in adolescents with very low birth weight. Brain 2007;130(Pt 3):654-66

Conflict of Interest: None declared
Submit a Comment

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Web of Science® Times Cited: 21

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Collections