We're unable to sign you in at this time. Please try again in a few minutes.
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Original Investigation |

An Evidence-Based Discussion of Heading the Ball and Concussions in High School Soccer

R. Dawn Comstock, PhD1,2; Dustin W. Currie, MPH1; Lauren A. Pierpoint, MS1; Joseph A. Grubenhoff, MD2; Sarah K. Fields, JD, PhD3
[+] Author Affiliations
1Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora
2Department of Pediatrics, University of Colorado School of Medicine, Aurora
3Department of Communication, University of Colorado Denver
JAMA Pediatr. 2015;169(9):830-837. doi:10.1001/jamapediatrics.2015.1062.
Text Size: A A A
Published online

Importance  Soccer, originally introduced as a safer sport for children and adolescents, has seen a rapid increase in popularity in the United States over the past 3 decades. Recently, concerns have been raised regarding the safety of soccer ball heading (when an athlete attempts to play the ball in the air with his or her head) given the rise in concussion rates, with some calling for a ban on heading among soccer players younger than 14 years.

Objectives  To evaluate trends over time in boys’ and girls’ soccer concussions, to identify injury mechanisms commonly leading to concussions, to delineate soccer-specific activities during which most concussions occur, to detail heading-related soccer concussion mechanisms, and to compare concussion symptom patterns by injury mechanism.

Design, Setting, and Participants  Retrospective analysis of longitudinal surveillance data collected from 2005-2006 through 2013-2014 in a large, nationally representative sample of US high schools. Participants were boys and girls who were high school soccer players.

Exposures  Concussions sustained during high school–sanctioned soccer games and practices.

Main Outcomes and Measures  Mechanism and sport-specific activity of concussion.

Results  Overall, 627 concussions were sustained during 1 393 753 athlete exposures (AEs) among girls (4.50 concussions per 10 000 AEs), and 442 concussions were sustained during 1 592 238 AEs among boys (2.78 concussions per 10 000 AEs). For boys (68.8%) and girls (51.3%), contact with another player was the most common concussion mechanism. Heading was the most common soccer-specific activity, responsible for 30.6% of boys’ concussions and 25.3% of girls’ concussions. Contact with another player was the most common mechanism of injury in heading-related concussions among boys (78.1%) and girls (61.9%). There were few differences in concussion symptom patterns by injury mechanism.

Conclusions and Relevance  Although heading is the most common activity associated with concussions, the most frequent mechanism was athlete-athlete contact. Such information is needed to drive evidence-based, targeted prevention efforts to effectively reduce soccer-related concussions. Although banning heading from youth soccer would likely prevent some concussions, reducing athlete-athlete contact across all phases of play would likely be a more effective way to prevent concussions as well as other injuries.

Figures in this Article

Sign in

Purchase Options

• Buy this article
• Subscribe to the journal
• Rent this article ?


Place holder to copy figure label and caption
Concussion Rates Over Time in Boys’ and Girls’ Soccer, National High School Sports-Related Injury Surveillance Study, Original Sample, 2005-2006 Through 2013-2014

Statistically significant trends over time were observed for all data.

Graphic Jump Location




Also Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
Please click the checkbox indicating that you have read the full article in order to submit your answers.
Your answers have been saved for later.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.


Some tools below are only available to our subscribers or users with an online account.

4 Citations

Sign in

Purchase Options

• Buy this article
• Subscribe to the journal
• Rent this article ?

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Collections
PubMed Articles

Users' Guides to the Medical Literature: A Manual for Evidence-Based Clinical Practice, 3rd ed
Evidence-Based Practitioners and Evidence-Based Care

Users' Guides to the Medical Literature: A Manual for Evidence-Based Clinical Practice, 3rd ed
The Structure of the Users' Guides to the Medical Literature: The Foundations