0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Original Investigation |

Longitudinal Effects of Dietary Sodium and Potassium on Blood Pressure in Adolescent Girls

Justin R. Buendia, BS1; M. Loring Bradlee, MS1; Stephen R. Daniels, MD, PhD2,3; Martha R. Singer, MPH, RD1; Lynn L. Moore, DSc, MPH1
[+] Author Affiliations
1Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
2Department of Pediatrics, University of Colorado School of Medicine, Aurora
3The Children’s Hospital, Aurora, Colorado
JAMA Pediatr. 2015;169(6):560-568. doi:10.1001/jamapediatrics.2015.0411.
Text Size: A A A
Published online

Importance  Identification of risk factors early in life for the development of high blood pressure is critical to the prevention of cardiovascular disease.

Objective  To study prospectively the effect of dietary sodium, potassium, and the potassium to sodium ratio on adolescent blood pressure.

Design, Setting, and Participants  The National Heart, Lung, and Blood Institute’s Growth and Health Study is a prospective cohort study with sites in Richmond, California; Cincinnati, Ohio; and Washington, DC. Participants included 2185 black and white girls initially aged 9 to 10 years with complete data for early-adolescent to midadolescent diet and blood pressure who were followed up for 10 years. The first examination visits were from March 1987 through February 1988 and follow-up continued until February 1999. Longitudinal mixed models and analysis of covariance models were used to assess the effect of dietary sodium, potassium, and the potassium to sodium ratio on systolic and diastolic blood pressures throughout adolescence and after 10 years of follow-up, adjusting for race, height, activity, television/video time, energy intake, and other dietary factors.

Exposures  Mean dietary sodium and potassium intakes and the mean potassium to sodium ratio in individuals aged 9 to 17 years. To eliminate potential confounding by energy intake, energy-adjusted sodium and potassium residuals were estimated.

Main Outcomes and Measures  Mean systolic and diastolic blood pressures throughout adolescence and at the end of follow-up (individuals aged 17-21 years).

Results  Sodium intakes were classified as less than 2500 mg/d (19.4% of participants), 2500 mg/d to less than 3000 mg/d (29.5%), 3000 mg/d to less than 4000 mg/d (41.4%), and 4000 mg/d or more (9.7%). Potassium intakes ranged from less than 1800 mg/d (36.0% of participants) to 1800 mg/d to less than 2100 mg/d (26.2%), 2100 mg/d to less than 2400 mg/d (18.8%), and 2400 mg/d or more (19.0%). There was no evidence that higher sodium intakes (3000 to <4000 mg/d and ≥4000 mg/d vs <2500 mg/d) had an adverse effect on adolescent blood pressure and longitudinal mixed models showed that those consuming 3500 mg/d or more had generally lower diastolic blood pressures compared with individuals consuming less than 2500 mg/d (P = .18). However, higher potassium intakes were inversely associated with blood pressure change throughout adolescence (P < .001 for systolic and diastolic) and at the end of follow-up (P = .02 and P = .05 for systolic and diastolic, respectively). While the potassium to sodium ratio was also inversely associated with systolic blood pressure (P = .04), these effects were generally weaker compared with effects for potassium alone.

Conclusions and Relevance  In this study of adolescent girls, consumption of 3500 mg/d of sodium or more had no adverse effect on blood pressure. The beneficial effects of dietary potassium on both systolic and diastolic blood pressures suggest that consuming more potassium-rich foods during childhood may help suppress the adolescent increase in blood pressure.

Figures in this Article

Figures

Place holder to copy figure label and caption
Figure.
Longitudinal Effects of Sodium Intake, Potassium Intake, and the Potassium to Sodium Ratio on Adolescent Blood Pressure

A, Sodium models were adjusted for race, height, activity, television/video time, percentage of calories from solid fat and added sugars, and dietary fiber. B, Potassium models were adjusted for race, height, activity, television/video time, and percentage of calories from solid fat and added sugars. C, Potassium to sodium ratio models were adjusted for race, height, activity, television/video time, percentage of calories from solid fat and added sugars, dietary fiber, and energy intake.

Graphic Jump Location

Tables

References

Correspondence

CME
Also Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
Please click the checkbox indicating that you have read the full article in order to submit your answers.
Your answers have been saved for later.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.

Multimedia

Some tools below are only available to our subscribers or users with an online account.

2,107 Views
1 Citations
×

Sign in

Purchase Options

• Buy this article
• Subscribe to the journal
• Rent this article ?

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Collections
PubMed Articles
Jobs
JAMAevidence.com

Users' Guides to the Medical Literature: A Manual for Evidence-Based Clinical Practice, 3rd ed
From Evidence to Recommendations

Users' Guides to the Medical Literature: A Manual for Evidence-Based Clinical Practice, 3rd ed
Overall Confidence in Effect Estimates

brightcove.createExperiences();