0
Article |

Socially Isolated Children 20 Years Later:  Risk of Cardiovascular Disease FREE

Avshalom Caspi, PhD; HonaLee Harrington, BS; Terrie E. Moffitt, PhD; Barry J. Milne, MSc; Richie Poulton, PhD
[+] Author Affiliations

Author Affiliations: Department of Psychology, University of Wisconsin, Madison (Drs Caspi and Moffitt and Ms Harrington); Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, King's College, London, England (Drs Caspi and Moffitt and Mr Milne); and Dunedin Multidisciplinary Health and Development Research Unit, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand (Dr Poulton).


Arch Pediatr Adolesc Med. 2006;160(8):805-811. doi:10.1001/archpedi.160.8.805.
Text Size: A A A
Published online

Objective  To test the hypothesis that children who occupy peripheral or isolated roles in their peer groups (isolated children) are at risk of poor adult health.

Design  Longitudinal study of an entire birth cohort.

Setting  Dunedin, New Zealand.

Participants  A total of 1037 children who were followed up from birth to age 26 years.

Interventions  Measurement of social isolation in childhood, adolescence, and adulthood.

Main Outcome Measures  When study members were 26 years old, we measured adult cardiovascular multifactorial risk status (overweight, elevated blood pressure, elevated total cholesterol level, low high-density lipoprotein level, elevated glycated hemoglobin concentration, and low maximum oxygen consumption).

Results  Socially isolated children were at significant risk of poor adult health compared with nonisolated children (risk ratio, 1.37; 95% confidence interval, 1.17-1.61). This association was independent of other well-established childhood risk factors for poor adult health (low childhood socioeconomic status, low childhood IQ, childhood overweight), was not accounted for by health-damaging behaviors (lack of exercise, smoking, alcohol misuse), and was not attributable to greater exposure to stressful life events. In addition, longitudinal findings showed that chronic social isolation across multiple developmental periods had a cumulative, dose-response relationship to poor adult health (risk ratio, 2.58; 95% confidence interval, 1.46-4.56).

Conclusions  Longitudinal findings about children followed up to adulthood suggest that social isolation has persistent and cumulative detrimental effects on adult health. The findings underscore the usefulness of a life-course approach to health research, by focusing attention on the effect of the timing of psychosocial risk factors in relation to adult health.

Figures in this Article

The need to belong is a fundamental human motivation that, when thwarted, compromises psychological health.1,2 Loneliness and social isolation can also compromise physical health. Prospective studies have documented that lack of social support and social isolation in adulthood predict the future onset of coronary artery disease35 and are related to the prognosis for adult patients with preexisting coronary artery disease.6,7 However, emerging evidence from life-course epidemiology points to the importance of early life experiences in shaping adult disease.810 In the present study, we observed a 1972-1973 cohort of children from birth to young adulthood and tested the hypothesis that children who occupy peripheral or isolated roles in their peer group are at significant risk of poor adult health. Because the cohort was still too young to present adverse clinical end points of cardiovascular disease (eg, myocardial infarction), we focused on multiple risk-factor clustering as a measure of adverse cardiovascular risk.1113

Our first aim was to test whether childhood social isolation was an independent risk factor for poor adult health. We thus tested 3 alternative explanations for the link between social isolation and poor adult health.

A first alternative explanation, the co-occurring risk hypothesis, is that links between childhood isolation and poor adult health are spurious because both are associated with other well-established childhood risk factors for adult disease. We tested 4 such risk factors. First, some children may be socially isolated from their peers because they come from socioeconomically disadvantaged families, and children who grow up in families with low socioeconomic status (SES) have poor health in adulthood.14 Second, some children may be isolated because they are overweight,15 and childhood overweight is a risk factor for poor adult health.16,17 Third, some children may be isolated because they are mentally retarded or simply not very bright, and recent longitudinal research suggests that intelligence (as measured by IQ tests) predicts adult morbidity and mortality, including cardiovascular diseases.18 Fourth, some children are isolated because they are aggressive and are thus rejected by their peers,19 and longitudinal research suggests that aggression may be a risk factor for all-cause morbidity.20 If childhood social isolation is an independent risk factor for adult poor health, it should survive controlling for all of these co-occurring childhood risk factors.

A second alternative explanation, the health-behavior hypothesis, is that socially isolated children develop poor health because they engage in health-compromising behaviors as adolescents or adults.21 For example, they may become so socially disengaged that they lead increasingly sedentary lives and refrain from exercise. In addition, lonely children may smoke and drink more, possibly as a form of self-medication or as a way to gain approval from peers. In the present study, we measured these behaviors and tested whether childhood social isolation is related to poor adult health because isolated young people engage in more health-compromising behaviors.

According to the differential-exposure hypothesis, lonely children grow up to be exposed to more stress.21 In the present study, we measured 3 potential stressors (low status attainment, stressful life events, and depression) and tested whether childhood social isolation is related to poor adult health because lonely children experience more stressful lives when they grow up.

Our second aim was to test the cumulative effects of social isolation on adult health, testing 2 interrelated hypotheses. First, we examined the early-timing hypothesis, testing whether childhood social isolation has an influence on adult health because it contributes to adult social isolation or because it may establish psychological and biological tendencies that independently affect adult health.22 If childhood social isolation is linked to poor adult health simply because it is a developmental precursor of later social isolation, the association between childhood social isolation and poor adult health should be attenuated once adult social isolation is factored into the longitudinal analysis. If the longitudinal association remains significant, it would suggest that the distress created by social isolation early in life may erode health over time. Second, we examined the cumulative stress hypothesis, testing whether the duration of social isolation across multiple developmental periods bears a dose-response relationship to poor adult health.

SAMPLE

Participants were members of the Dunedin Multidisciplinary Health and Development Study, a longitudinal investigation of health and behavior in a complete birth cohort.23 Study members were born in Dunedin, New Zealand, between April 1, 1972, and March 31, 1973. Of these, 1037 children (91% of eligible births; 52% male) participated in the first follow-up assessment at age 3 years, constituting the base sample for the remainder of the study. Cohort families represented the full range of SES in the general population of New Zealand's South Island and were primarily white. Follow-up examinations were carried out at ages 5, 7, 9, 11, 13, 15, 18, 21, and, most recently, 26 years, when we assessed 980 (96.2%) of the 1019 study members still alive. Participants attended the research unit within 60 days of their birthday for a full day of individual data collection. The unit assumed study members' costs to remove all barriers to their participation, eg, travel, lost wages, and child care. The Otago Ethics Committee granted ethical approval for each phase of this longitudinal study. Study members gave informed consent before participating.

SOCIAL ISOLATION MEASURES
Childhood Social Isolation

When study members were 5, 7, 9, and 11 years old, their parents and teachers completed the Rutter Child Scales.24 Two items measure peer problems (“tends to do things on his/her own; is rather solitary” and “not much liked by other children”). Scores on these 2 items were averaged across the 4 time periods and by 2 reporters (Cronbach α = 0.77). Evidence shows that children who chronically experience negative peer relations have the worst prognosis, and repeated assessments of children's peer experiences are recommended for research purposes.25

Adolescent Social Isolation

When study members were 15 years old, they completed the inventory of peer attachment,26,27 which assesses the extent to which adolescents feel integrated with their peers (eg, “I feel alone or apart when I am with friends” and “friends are concerned about my well-being” [reverse coded]). Scores were summed to derive a scale of adolescent social isolation (Cronbach α = 0.80).

Adult Social Isolation

When study members were 26 years old, we used 2 sources of information to identify socially isolated study members. First, we identified those who were not involved with any partner and/or had not dated at all in the past year (5%). Second, study members were interviewed about their social support networks and asked how many people (1) “make you feel liked or loved,” (2) “can comfort you or calm you down,” (3) “you can trust to keep the things you talk about private,” and (4) “you can talk to when you are feeling down or blue.” We identified those who said they had no one to provide any one of these emotional support roles (4%). We classified as “isolated” those who said they were not involved with any partner and had not dated at all in the past year or those who had no one to provide emotional support; 8% of the sample was so classified.

CO-OCCURRING RISK FACTORS AND POTENTIAL MEDIATING VARIABLES

The SES of study members' families was measured with a 6-point scale assessing parents' occupational status. The scale places each occupation into 1 of 6 categories (from 1, professional to 6, unskilled laborer) on the basis of educational levels and income associated with that occupation in data from the New Zealand census.9

Height and weight measurements were taken at ages 5, 7, 9, and 11 years. Body mass index was calculated and standardized within each age and averaged across the 4 time periods to yield an index of childhood overweight.

The Wechsler Intelligence Scale for Children28 was administered by trained psychometrists at ages 7, 9, and 11 years.29 We averaged scores from the 3 age periods to form an overall score (mean, 106.4; SD, 14.46).

When study members were 5, 7, 9, and 11 years old, their parents and teachers rated whether each child “frequently fights with other children.”24 We created a childhood aggression scale by averaging these ratings (Cronbach α = 0.70).23

We measured 3 health-damaging behaviors. First, the lack of vigorous exercise was assessed at age 26 years by asking study members to report how much time, in a typical week, they spent engaged in physical activity that “caused you to breathe hard or puff a lot, eg, working out at the gym, playing [a] sport, digging in the garden, or activity at work.”30 Because of the skewed nature of reported activity levels, quartiles were formed. Second, heavy smoking at age 26 years was defined as smoking 20 or more cigarettes per day (10% of the sample). Third, alcohol dependence was assessed at age 26 years using a reporting period of the past 12 months; 17% of the study members met Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition31 criteria for alcohol dependence.

We measured 3 adult stressors. First, low adult SES was measured with a 6-point scale assessing occupational status, as described in the first paragraph of this section. Second, stressful life events during the past 5 years (including problems with employment, finances, housing, disabling injuries, and partner relationships) were assessed at age 26 years.32 Third, depression was assessed at age 26 years using a reporting period of the past 12 months; 17% of the study members met Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition31 criteria for a major depressive disorder.

ADULT PHYSICAL HEALTH MEASURES

Physical examinations were conducted at age 26 years. We assessed health risk-factor clustering by measuring 6 biomarkers: weight, blood pressure, total cholesterol level, high-density lipoprotein cholesterol level, glycated hemoglobin concentration, and maximum oxygen consumption. (Pregnant women were excluded from the reported analyses.)

To determine overweight, we assessed body mass index (calculated as weight in kilograms divided by the square of height in meters) and waist girth (in centimeters). Study members were considered overweight if their body mass index was 30 or more or if their waist measurement was 88 cm or more for women or 102 cm or more for men33,34; 16% of the women and 10% of the men in the sample met this criterion.

Blood pressure (in millimeters of mercury) was assessed according to standard protocols.35 Study members were considered to have high blood pressure if their systolic reading was 130 mm Hg or higher or if their diastolic reading was 85 mm Hg or higher34; 6% of the women and 26% of the men met this criterion.

Venipuncture was conducted at the same time each day (4:15-4:45 PM). Ninety percent of the sample consented. Nonfasting total cholesterol, high-density lipoprotein cholesterol, and glycated hemoglobin levels were measured in the serum.

Study members were considered to have an elevated total cholesterol level if their total cholesterol reading was 240 mg/dL (6.22 mmol/L) or greater34; 12% of the women and 12% of the men met this criterion.

Study members were considered to have a low high-density lipoprotein cholesterol level if the value was 40 mg/dL (1.04 mmol/L) or lower for men and 50 mg/dL (1.3 mmol/L) or less for women34; 32% of the women and 27% of the men met this criterion.

Glycated hemoglobin concentrations (expressed as a percentage of total hemoglobin) were measured by ion exchange high-performance liquid chromatography (Variant II; Bio-Rad, Hercules, Calif) (coefficient of variation, 2.4%), a method certified by the US National Glycohemoglobin Standardization Program (http://www.missouri.edu/~diabetes/ngsp.html). Following Blake et al,36 study members were designated as having this health risk if their scores were in the top quartile (≥5.2%) of the cohort's distribution.

Maximum oxygen consumption adjusted for body weight (in milliliters per minute per kilogram) was assessed by measuring heart rate in response to a submaximal exercise test on a friction-braked cycle ergometer, and calculated by standard protocols.37 Sex-specific quartiles were formed. Following Carnethon et al,38 study members in the lowest quartile were considered to have this health risk.

We assessed multiple risk-factor clustering by summing the number of biomarkers on which the study member was at risk (range, 0-6; 35% of the study members had 0 risks; 35%, 1 risk; 16%, 2 risks; 10%, 3 risks; 3%, 4 risks; and 1%, ≥5 risks). Study members were “clustered” if they had at least 3 risk factors: 14% of the study members were clustered (13% of the women and 15% of the men).

DATA ANALYSIS

We estimated the effect of social isolation on adult health, controlling for sex. We then expanded the regression equation to control for co-occurring childhood risk factors, health-damaging behaviors, and adult stress exposure. For these analyses linking childhood social to adult health outcomes, the total number in the cohort was 841. For sensitivity analyses, we conducted all analyses twice. First, we estimated regression models where the outcome was binary (1, clustered; 0, nonclustered), and in this article we report risk ratios (RRs) and 95% confidence intervals (CIs). Second, we estimated negative binomial regressions where the outcome was the summed number of biomarkers (0-6). The same pattern of associations was observed across both methods examined; tables showing the results from negative binomial regressions are available from the authors.

We tested the cumulative effects of social isolation on multiple risk-factor clustering in adulthood by using 2 steps. First, we conducted a regression analysis to estimate the unique effects of childhood social isolation, adolescent social isolation, and adult social isolation on adult clustering. Second, we estimated the effect of the linear combination of these 3 variables on adult risk-factor clustering. For these analyses, we had complete data for 810 study members.

CHILDHOOD ISOLATION AND ADULT HEALTH

Table 1 shows the biomarker and risk-factor characteristics of nonclustered vs clustered participants. The regression analysis in Table 2 (model 1) shows that a 1-SD change in childhood social isolation increased the risk of adult risk-factor clustering (defined as having adverse levels of ≥3 of the 6 adult biomarkers) by 1.37 (95% CI, 1.17-1.61). We tested whether the longitudinal association between childhood social isolation and adult clustering was confounded by 4 well-established risk factors for poor adult health (the co-occurring risk hypothesis). The regression analysis in Table 2 (model 2) shows that, even after controlling for these 4 childhood risk factors for poor adult health, the association between childhood social isolation and adult clustering remained statistically significant: RR, 1.34; 95% CI, 1.10-1.64. Thus, the link between childhood social isolation and adult risk-factor clustering appeared to be independent of other well-established childhood risk factors for poor health.

Table Graphic Jump LocationTable 1. Biomarker Characteristics and Risk-Factor Characteristics of Study Participants, According to Adult Cardiovascular Multifactorial Risk Status (Nonclustered vs Clustered)*
Table Graphic Jump LocationTable 2. Association Between Childhood Social Isolation and Adult Cardiovascular Multifactorial Risk Status*

We also tested whether the longitudinal association between childhood social isolation and adult risk-factor clustering was accounted for by the fact that isolated children later engaged in more health-damaging behaviors (the health-behavior hypothesis). After controlling for these potential health-damaging behaviors, the association between childhood social isolation and adult risk-factor clustering remained statistically significant: RR, 1.33; 95% CI, 1.13-1.56 (Table 2; model 3).

Finally, we tested whether the longitudinal association between childhood social isolation and adult clustering was mediated by isolated children's greater exposure to stress in adulthood (the differential-exposure hypothesis). After controlling for these potential mediators, the association between childhood isolation and adult risk-factor clustering remained statistically significant: RR, 1.37; 95% CI, 1.16-1.62 (Table 2; model 4).

CUMULATIVE INFLUENCE OF SOCIAL ISOLATION ON ADULT HEALTH

Social isolation showed some continuity across the life course. Children who were rated by adults as socially isolated were likely to self-report that they were socially isolated in adolescence (r = 0.16, P<.001), and social isolation in both childhood and adolescence increased the risk of social isolation in adulthood (RR, 1.37; 95% CI, 1.13-1.66; and RR, 1.61; 95% CI, 1.30-1.99, respectively).

Table 3 shows the links between these 3 developmentally distinct assessments of social isolation and adult risk-factor clustering. The table highlights 4 findings. First, column A shows that social isolation was robustly linked to adult risk-factor clustering, whether isolation was assessed in childhood (RR, 1.37; 95% CI, 1.17-1.60), in adolescence (RR, 1.26; 95% CI, 1.04-1.52), or in adulthood (RR, 2.01; 95% CI, 1.20-3.36). Second, column A also shows that social isolation was linked to adult risk-factor clustering, whether isolation was measured via adults' reports about children's social isolation or via adolescents' and adults' own self-reports. Third, column B shows that, even after taking into account adult social isolation, childhood social isolation continued to be linked significantly to adult risk-factor clustering (RR, 1.31; 95% CI, 1.11-1.56). Fourth, the bottom row of Table 3 shows that social isolation was cumulatively linked to adult clustering; study members who occupied peripheral or isolated roles in their networks at multiple developmental periods were in worse health in adulthood (RR, 2.58; 95% CI, 1.46-4.56). The Figure documents the association between cumulative social isolation and adult clustering.

Place holder to copy figure label and caption
Figure.

Association between cumulative social isolation and risk-factor clustering in adulthood. For illustrative purposes, study participants were considered isolated if they were in the top decile in each developmental period. Limit lines indicate standard error.

Graphic Jump Location
Table Graphic Jump LocationTable 3. Cumulative Influence of Social Isolation on Adult Cardiovascular Multifactorial Risk Status*

The findings from this prospective longitudinal study are novel in 2 ways. First, whereas clinical and research interest in the association between social isolation and poor health has been generated by studies of adults,7 the findings from this study provide, to our knowledge, the first evidence linking childhood social isolation to poor adult health. Our findings are consistent with a handful of retrospective studies reporting associations between chronic health conditions in adulthood and adults' retrospective reports of a perceived lack of social support in childhood.39,40 There has been concern about the accuracy of long-term recall of childhood experiences,41 but that is not an issue in this study because we collected data about childhood social isolation contemporaneously during childhood in the context of the longitudinal prospective investigation. In addition, the association between childhood social isolation and poor adult health was independent of other well-established childhood risk factors for poor adult health, including low childhood SES, low childhood IQ, and childhood overweight. Moreover, health-damaging behaviors did not account for the association between childhood social isolation and poor adult health. This is consistent with studies of adults21,42 in which health-damaging behaviors did not account for the poor health of socially isolated individuals. Finally, the association between childhood social isolation and poor adult health was not accounted for by a greater exposure to stressful life circumstances among isolated children in adulthood.

Second, whereas studies of adults have pointed to an inverse gradient between social support and clinical outcomes,7 the present study additionally documents that social isolation during multiple developmental periods (in childhood, adolescence, and adulthood) had a cumulative, dose-response relationship to poor adult health. A useful concept for understanding how repeated social isolation can lead to poor health is allostatic load,43 which refers to the cumulative wear and tear caused by repeated adaptations to psychosocial stressors (such as social isolation) in childhood, adolescence, and adulthood. The experience of social isolation may be a form of chronic stress that activates the sympathetic nervous and hypothalamic-pituitary-adrenocortical systems and induces a variety of pathophysiologic responses that contribute to the clustering of risk factors for coronary artery disease (hypertension, insulin resistance, and central adiposity).44,45 It is also possible that social isolation disrupts constructive and restorative processes that enhance physiological capacities, as suggested by evidence that lonely individuals experience disrupted sleep46 and engage in passive rather than active coping strategies in their everyday lives.47

The new findings should be evaluated alongside several limitations. First, because we studied a cohort of children born only in the early 1970s, we are not yet able to assess disease outcomes; the study members are still too young. Instead, we focused on intermediate health risks that are known to predict future disease in midlife and old age.11,12 Second, findings from this New Zealand cohort require replication in other parts of the world. However, there is reason to believe that these findings about the effect of childhood social isolation may be generalizable to other settings, given that our findings about the significance of other well-established childhood risk factors for poor adult health (eg, low childhood SES and childhood overweight) are consistent with findings reported from North American and European population-based studies.48 Third, we do not know whether these findings can be generalized to all ethnic groups.

The findings from the present study underscore the usefulness of a life-course approach to health research.8 The influence of psychosocial risk factors on the course of coronary artery disease is now well documented.49 However, adult risk factors are the target of most research into the effect of psychosocial risk factors on poor adult health and on the pathogenesis of cardiovascular disease in particular. In contrast, a life-course perspective focuses attention on the effect of the developmental timing of psychosocial factors on adult health.50,51 The findings from this longitudinal, observational study of children followed up from childhood to adulthood suggest that social isolation has persistent and cumulative effects on poor adult health. The findings appear to meet several criteria suggestive of a causal association between social isolation and adult health52: social isolation preceded the outcome, the association between isolation and health appeared to be independent of a wide range of correlated risk factors, the findings were consistent with reports from studies of adults about the link between their social isolation and poor health, and there was evidence of a dose-response relationship between duration of exposure to social isolation and poor adult health. The epidemiologic evidence cannot identify the mechanisms involved but is consistent with emerging evidence that social isolation and social exclusion may have tangible neurobiological effects on lifelong development.2,53,54

Correspondence: Avshalom Caspi, PhD, Institute of Psychiatry, SGDP Centre Mailbox P080, De Crespigny Park, London SE5 8AF, England (a.caspi@iop.kcl.ac.uk).

Accepted for Publication: January 28, 2006.

Author Contributions:Study concept and design: Caspi, Harrington, Moffitt, and Poulton. Acquisition of data: Caspi, Moffitt, and Poulton. Analysis and interpretation of data: Harrington and Milne. Drafting of the manuscript: Caspi, Harrington, and Milne. Critical revision of the manuscript for important intellectual content: Moffitt and Poulton. Statistical analysis: Caspi, Harrington, and Milne. Obtained funding: Caspi, Moffitt, and Poulton. Administrative, technical, and material support: Poulton. Study supervision: Moffitt.

Funding/Support: This study was supported by grants from the UK Medical Research Council, the National Institute of Mental Health, the William T. Grant Foundation, the National Heart Foundation of New Zealand, and the Health Research Council of New Zealand. Dr Moffitt is a Royal-Society Wolfson Research Merit Award holder.

Baumeister  RFLeary  MR The need to belong: desire for interpersonal attachments as a fundamental human motivation Psychol Bull 1995;117497- 529
PubMed
MacDonald  GLeary  MR Why does social exclusion hurt? the relationship between social and physical pain Psychol Bull 2005;131202- 223
PubMed
Berkman  LFSyme  SL Social networks, host resistance, and mortality: a nine-year follow-up study of Alameda County residents Am J Epidemiol 1979;109186- 204
PubMed
House  JSRobbins  CMetzner  HL The association of social relationships and activities with mortality: prospective evidence from the Tecumseh Community Health Study Am J Epidemiol 1982;116123- 140
PubMed
Kaplan  GAWilson  TWCohen  RDKauhanen  JWu  MSalonen  JT Social functioning and overall mortality: prospective evidence from the Kuopio Ischemic Heart Disease Risk Factor Study Epidemiology 1994;5495- 500
PubMed
Williams  RBBarefoot  JCCaliff  RM  et al.  Prognostic importance of social and economic resources among medically treated patients with angiographically documented coronary artery disease JAMA 1992;267520- 524
PubMed
Rozanski  ABlumenthal  JAKaplan  J Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy Circulation 1999;992192- 2217
PubMed
Kuh  DBen-Shlomo  Y A Life Course Approach to Chronic Disease Epidemiology.  Oxford, England Oxford University Press2004;
Poulton  RCaspi  AMilne  BJ  et al.  Association between children's experience of socioeconomic disadvantage and adult health: a life-course study Lancet 2002;3601640- 1645
PubMed
Wadsworth  MEJ Health inequalities in the life course perspective Soc Sci Med 1997;44859- 870
PubMed
Grundy  SMPasternak  RGreenland  PSmith  S  JrFuster  V Assessment of cardiovascular risk by use of multiple-risk-factor assessment equations: a statement for healthcare professionals from the American Heart Association and the American College of Cardiology J Am Coll Cardiol 1999;341348- 1359
PubMed
Munoz  AGange  SJ Methodological issues for biomarkers and intermediate outcomes in cohort studies Epidemiol Rev 1998;2029- 42
PubMed
Myers  LCoughlin  SSWebber  LSSrinivasan  SRBerenson  GS Prediction of adult cardiovascular multifactorial risk status from childhood risk factor levels: the Bogalusa heart study Am J Epidemiol 1995;142918- 924
PubMed
Galobardes  BLynch  JWDavey  SG Childhood socioeconomic circumstances and cause-specific mortality in adulthood: systematic review and interpretation Epidemiol Rev 2004;267- 21
PubMed
Strauss  RSPollack  HA Social marginalization of overweight children Arch Pediatr Adolesc Med 2003;157746- 752
PubMed
Gunnell  DJFrankel  SJNanchahal  KPeters  TJDavey  SG Childhood obesity and adult cardiovascular mortality: a 57-y follow-up study based on the Boyd Orr cohort Am J Clin Nutr 1998;671111- 1118
PubMed
Freedman  DSDietz  WHSrinivasan  SRBerenson  GS The relation of overweight to cardiovascular risk factors among children and adolescents: the Bogalusa Heart Study Pediatrics 1999;1031175- 1182
PubMed
Gottfredson  LSDeary  IJ Intelligence predicts health and longevity, but why? Curr Dir Psychol Sci 2004;131- 4
Rubin  KHBukowski  WParker  JGEisenberger  NedDamon  Wed Peer interactions, relationships and groups Social, Emotional and Personality Development. New York, NY John Wiley & Sons Inc1998;619- 700Handbook of Child Psychology vol 3
Laub  JHVaillant  GE Delinquency and mortality: a 50-year follow-up study of 1,000 delinquent and nondelinquent boys Am J Psychiatry 2000;15796- 102
PubMed
Cacioppo  JTHawkley  LCBernston  GG The anatomy of loneliness Curr Dir Psychol Sci 2003;1271- 74
Adler  NESnibbe  AC The role of psychosocial processes in explaining the gradient between socioeconomic status and health Curr Dir Psychol Sci 2003;12119- 123
Moffitt  TECaspi  ARutter  MSilva  PA Sex Differences in Antisocial Behaviour: Conduct Disorder, Delinquency, and Violence in the Dunedin Longitudinal Study.  Cambridge, England Cambridge University Press2001;
Elander  JRutter  M Use and development of the Rutter parents' and teachers' scale Int J Methods Psychiatr Res 1996;663- 78
Asher  SRPaquette  JA Loneliness and peer relations in childhood Curr Dir Psychol Sci 2003;1275- 78
Armsden  GCGreenberg  MT The inventory of parent and peer attachment: individual differences and their relationship to psychological well-being in adolescence J Youth Adolesc 1987;16427- 454
Nada-Raja  SMcGee  RStanton  WR Perceived attachments to parents and peers and psychological well-being in adolescence J Youth Adolesc 1992;21471- 485
Wechsler  D Manual for the Wechsler Intelligence Scale for Children–Revised.  New York, NY Psychological Corp1974;
Moffitt  TECaspi  AHarkness  ARSilva  PA The natural history of change in intellectual performance: who changes? how much? is it meaningful? J Child Psychol Psychiatry 1993;34455- 506
PubMed
Hopkins  WGWilson  NCRussell  DG Validation of the physical activity instrument for the Life in New Zealand national survey Am J Epidemiol 1991;13373- 82
PubMed
American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders. 4th ed Washington, DC American Psychiatric Association1994;
Caspi  ASugden  KMoffitt  TE  et al.  Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene Science 2003;301386- 389
PubMed
National Institutes of Health, Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults.  Bethesda, Md Dept of Health and Human Services, National Heart, Lung and Blood Institute, National Institutes of Health1998;
National Institutes of Health, Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation and Treatment of Cholesterol in Adults (Adult Treatment Panel III).  Bethesda, Md National Cholesterol Education Program, National Heart, Lung and Blood Institute, National Institutes of Health2001;
Perloff  DGrim  CFlack  J  et al.  Human blood pressure determination by sphygmomanometry Circulation 1993;882460- 2470
PubMed
Blake  GJPradhan  ADManson  JE  et al.  Hemoglobin A1c level and future cardiovascular events among women Arch Intern Med 2004;164757- 761
PubMed
Cullinane  EMSiconolfi  SCarleton  RAThompson  PD Modification of the Astrand-Rhyming sub-maximal bicycle test for estimating VO2max of inactive men and women Med Sci Sports Exerc 1988;20317- 318
PubMed
Carnethon  MRGidding  SSNehgme  RSidney  SJacobs  DR  JrLiu  K Cardiorespiratory fitness in young adulthood and the development of cardiovascular disease risk factors JAMA 2003;2903092- 3100
PubMed
Russek  LGSchwartz  GE Perceptions of parental caring predict health status in midlife: a 35-year follow-up of the Harvard Mastery of Stress Study Psychosom Med 1997;59144- 149
PubMed
Shaw  BAKrause  NChatters  LMConnell  CMIngersoll-Dayton  B Emotional support from parents early in life, aging, and health Psychol Aging 2004;194- 12
PubMed
Hardt  JRutter  M Validity of adult retrospective reports of adverse childhood experiences: review of the evidence J Child Psychol Psychiatry 2004;45260- 273
PubMed
Seeman  TE Health promoting effects of friends and family on health outcomes in older adults Am J Health Promot 2000;14362- 370
PubMed
McEwen  B The End of Stress as We Know It.  Washington, DC Joseph Henry Press2002;
Rozanski  ABlumenthal  JADavidson  KWSaab  PGKubzansky  L The epidemiology, pathophysiology, and management of psychosocial risk factors in cardiac practice: the emerging field of behavioral cardiology J Am Coll Cardiol 2005;45637- 651
PubMed
Steptoe  AOwen  NKunz-Ebrecht  SRBrydon  L Loneliness and neuroendocrine, cardiovascular, and inflammatory stress responses in middle-aged men and women Psychoneuroendocrinology 2004;29593- 611
PubMed
Cacioppo  JTHawkley  LCBerntson  GG  et al.  Do lonely days invade the nights? potential social modulation of sleep efficiency Psychol Sci 2002;13384- 387
PubMed
Cacioppo  JTHawkley  LCCrawford  LE  et al.  Loneliness and health: potential mechanisms Psychosom Med 2002;64407- 417
PubMed
Power  CGraham  HDue  P  et al.  The contribution of childhood and adult socioeconomic position to adult obesity and smoking behaviour: an international comparison Int J Epidemiol 2005;34335- 344
PubMed
Rosengren  AHawken  SOunpuu  S  et al.  Association of psychosocial risk factors with risk of acute myocardial infarction in 11 119 cases and 13 648 controls from 52 countries (the INTERHEART study) Lancet 2004;364953- 962
PubMed
Elder  GHJohnson  MKCrosnoe  RMortimer  JTedShanahan  MJed The emergence and development of life course theory Handbook of the Life Course. New York, NY Plenum Publishing Corp2003;3- 22
Elder  GH  JrShanahan  MJLerner  RMedDamon  Wed The life course and human development Theoretical Models of Human Development New York, NY John Wiley & Sons Inc2006;Handbook of Child Psychology vol 1
Grimes  DASchulz  KF Bias and causal associations in observational research Lancet 2002;359248- 252
PubMed
Eisenberger  NILieberman  MDWilliams  KD Does rejection hurt? an fMRI study of social exclusion Science 2003;302290- 292
PubMed
McCabe  PMGonzales  JAZaias  J  et al.  Social environment influences the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit Circulation 2002;105354- 359
PubMed

Figures

Place holder to copy figure label and caption
Figure.

Association between cumulative social isolation and risk-factor clustering in adulthood. For illustrative purposes, study participants were considered isolated if they were in the top decile in each developmental period. Limit lines indicate standard error.

Graphic Jump Location

Tables

Table Graphic Jump LocationTable 1. Biomarker Characteristics and Risk-Factor Characteristics of Study Participants, According to Adult Cardiovascular Multifactorial Risk Status (Nonclustered vs Clustered)*
Table Graphic Jump LocationTable 2. Association Between Childhood Social Isolation and Adult Cardiovascular Multifactorial Risk Status*
Table Graphic Jump LocationTable 3. Cumulative Influence of Social Isolation on Adult Cardiovascular Multifactorial Risk Status*

References

Baumeister  RFLeary  MR The need to belong: desire for interpersonal attachments as a fundamental human motivation Psychol Bull 1995;117497- 529
PubMed
MacDonald  GLeary  MR Why does social exclusion hurt? the relationship between social and physical pain Psychol Bull 2005;131202- 223
PubMed
Berkman  LFSyme  SL Social networks, host resistance, and mortality: a nine-year follow-up study of Alameda County residents Am J Epidemiol 1979;109186- 204
PubMed
House  JSRobbins  CMetzner  HL The association of social relationships and activities with mortality: prospective evidence from the Tecumseh Community Health Study Am J Epidemiol 1982;116123- 140
PubMed
Kaplan  GAWilson  TWCohen  RDKauhanen  JWu  MSalonen  JT Social functioning and overall mortality: prospective evidence from the Kuopio Ischemic Heart Disease Risk Factor Study Epidemiology 1994;5495- 500
PubMed
Williams  RBBarefoot  JCCaliff  RM  et al.  Prognostic importance of social and economic resources among medically treated patients with angiographically documented coronary artery disease JAMA 1992;267520- 524
PubMed
Rozanski  ABlumenthal  JAKaplan  J Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy Circulation 1999;992192- 2217
PubMed
Kuh  DBen-Shlomo  Y A Life Course Approach to Chronic Disease Epidemiology.  Oxford, England Oxford University Press2004;
Poulton  RCaspi  AMilne  BJ  et al.  Association between children's experience of socioeconomic disadvantage and adult health: a life-course study Lancet 2002;3601640- 1645
PubMed
Wadsworth  MEJ Health inequalities in the life course perspective Soc Sci Med 1997;44859- 870
PubMed
Grundy  SMPasternak  RGreenland  PSmith  S  JrFuster  V Assessment of cardiovascular risk by use of multiple-risk-factor assessment equations: a statement for healthcare professionals from the American Heart Association and the American College of Cardiology J Am Coll Cardiol 1999;341348- 1359
PubMed
Munoz  AGange  SJ Methodological issues for biomarkers and intermediate outcomes in cohort studies Epidemiol Rev 1998;2029- 42
PubMed
Myers  LCoughlin  SSWebber  LSSrinivasan  SRBerenson  GS Prediction of adult cardiovascular multifactorial risk status from childhood risk factor levels: the Bogalusa heart study Am J Epidemiol 1995;142918- 924
PubMed
Galobardes  BLynch  JWDavey  SG Childhood socioeconomic circumstances and cause-specific mortality in adulthood: systematic review and interpretation Epidemiol Rev 2004;267- 21
PubMed
Strauss  RSPollack  HA Social marginalization of overweight children Arch Pediatr Adolesc Med 2003;157746- 752
PubMed
Gunnell  DJFrankel  SJNanchahal  KPeters  TJDavey  SG Childhood obesity and adult cardiovascular mortality: a 57-y follow-up study based on the Boyd Orr cohort Am J Clin Nutr 1998;671111- 1118
PubMed
Freedman  DSDietz  WHSrinivasan  SRBerenson  GS The relation of overweight to cardiovascular risk factors among children and adolescents: the Bogalusa Heart Study Pediatrics 1999;1031175- 1182
PubMed
Gottfredson  LSDeary  IJ Intelligence predicts health and longevity, but why? Curr Dir Psychol Sci 2004;131- 4
Rubin  KHBukowski  WParker  JGEisenberger  NedDamon  Wed Peer interactions, relationships and groups Social, Emotional and Personality Development. New York, NY John Wiley & Sons Inc1998;619- 700Handbook of Child Psychology vol 3
Laub  JHVaillant  GE Delinquency and mortality: a 50-year follow-up study of 1,000 delinquent and nondelinquent boys Am J Psychiatry 2000;15796- 102
PubMed
Cacioppo  JTHawkley  LCBernston  GG The anatomy of loneliness Curr Dir Psychol Sci 2003;1271- 74
Adler  NESnibbe  AC The role of psychosocial processes in explaining the gradient between socioeconomic status and health Curr Dir Psychol Sci 2003;12119- 123
Moffitt  TECaspi  ARutter  MSilva  PA Sex Differences in Antisocial Behaviour: Conduct Disorder, Delinquency, and Violence in the Dunedin Longitudinal Study.  Cambridge, England Cambridge University Press2001;
Elander  JRutter  M Use and development of the Rutter parents' and teachers' scale Int J Methods Psychiatr Res 1996;663- 78
Asher  SRPaquette  JA Loneliness and peer relations in childhood Curr Dir Psychol Sci 2003;1275- 78
Armsden  GCGreenberg  MT The inventory of parent and peer attachment: individual differences and their relationship to psychological well-being in adolescence J Youth Adolesc 1987;16427- 454
Nada-Raja  SMcGee  RStanton  WR Perceived attachments to parents and peers and psychological well-being in adolescence J Youth Adolesc 1992;21471- 485
Wechsler  D Manual for the Wechsler Intelligence Scale for Children–Revised.  New York, NY Psychological Corp1974;
Moffitt  TECaspi  AHarkness  ARSilva  PA The natural history of change in intellectual performance: who changes? how much? is it meaningful? J Child Psychol Psychiatry 1993;34455- 506
PubMed
Hopkins  WGWilson  NCRussell  DG Validation of the physical activity instrument for the Life in New Zealand national survey Am J Epidemiol 1991;13373- 82
PubMed
American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders. 4th ed Washington, DC American Psychiatric Association1994;
Caspi  ASugden  KMoffitt  TE  et al.  Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene Science 2003;301386- 389
PubMed
National Institutes of Health, Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults.  Bethesda, Md Dept of Health and Human Services, National Heart, Lung and Blood Institute, National Institutes of Health1998;
National Institutes of Health, Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation and Treatment of Cholesterol in Adults (Adult Treatment Panel III).  Bethesda, Md National Cholesterol Education Program, National Heart, Lung and Blood Institute, National Institutes of Health2001;
Perloff  DGrim  CFlack  J  et al.  Human blood pressure determination by sphygmomanometry Circulation 1993;882460- 2470
PubMed
Blake  GJPradhan  ADManson  JE  et al.  Hemoglobin A1c level and future cardiovascular events among women Arch Intern Med 2004;164757- 761
PubMed
Cullinane  EMSiconolfi  SCarleton  RAThompson  PD Modification of the Astrand-Rhyming sub-maximal bicycle test for estimating VO2max of inactive men and women Med Sci Sports Exerc 1988;20317- 318
PubMed
Carnethon  MRGidding  SSNehgme  RSidney  SJacobs  DR  JrLiu  K Cardiorespiratory fitness in young adulthood and the development of cardiovascular disease risk factors JAMA 2003;2903092- 3100
PubMed
Russek  LGSchwartz  GE Perceptions of parental caring predict health status in midlife: a 35-year follow-up of the Harvard Mastery of Stress Study Psychosom Med 1997;59144- 149
PubMed
Shaw  BAKrause  NChatters  LMConnell  CMIngersoll-Dayton  B Emotional support from parents early in life, aging, and health Psychol Aging 2004;194- 12
PubMed
Hardt  JRutter  M Validity of adult retrospective reports of adverse childhood experiences: review of the evidence J Child Psychol Psychiatry 2004;45260- 273
PubMed
Seeman  TE Health promoting effects of friends and family on health outcomes in older adults Am J Health Promot 2000;14362- 370
PubMed
McEwen  B The End of Stress as We Know It.  Washington, DC Joseph Henry Press2002;
Rozanski  ABlumenthal  JADavidson  KWSaab  PGKubzansky  L The epidemiology, pathophysiology, and management of psychosocial risk factors in cardiac practice: the emerging field of behavioral cardiology J Am Coll Cardiol 2005;45637- 651
PubMed
Steptoe  AOwen  NKunz-Ebrecht  SRBrydon  L Loneliness and neuroendocrine, cardiovascular, and inflammatory stress responses in middle-aged men and women Psychoneuroendocrinology 2004;29593- 611
PubMed
Cacioppo  JTHawkley  LCBerntson  GG  et al.  Do lonely days invade the nights? potential social modulation of sleep efficiency Psychol Sci 2002;13384- 387
PubMed
Cacioppo  JTHawkley  LCCrawford  LE  et al.  Loneliness and health: potential mechanisms Psychosom Med 2002;64407- 417
PubMed
Power  CGraham  HDue  P  et al.  The contribution of childhood and adult socioeconomic position to adult obesity and smoking behaviour: an international comparison Int J Epidemiol 2005;34335- 344
PubMed
Rosengren  AHawken  SOunpuu  S  et al.  Association of psychosocial risk factors with risk of acute myocardial infarction in 11 119 cases and 13 648 controls from 52 countries (the INTERHEART study) Lancet 2004;364953- 962
PubMed
Elder  GHJohnson  MKCrosnoe  RMortimer  JTedShanahan  MJed The emergence and development of life course theory Handbook of the Life Course. New York, NY Plenum Publishing Corp2003;3- 22
Elder  GH  JrShanahan  MJLerner  RMedDamon  Wed The life course and human development Theoretical Models of Human Development New York, NY John Wiley & Sons Inc2006;Handbook of Child Psychology vol 1
Grimes  DASchulz  KF Bias and causal associations in observational research Lancet 2002;359248- 252
PubMed
Eisenberger  NILieberman  MDWilliams  KD Does rejection hurt? an fMRI study of social exclusion Science 2003;302290- 292
PubMed
McCabe  PMGonzales  JAZaias  J  et al.  Social environment influences the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit Circulation 2002;105354- 359
PubMed

Correspondence

CME
Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).
Submit a Comment

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Topics
PubMed Articles